PRIVACY ATTACKS FOR AUTOMATIC SPEECH RECOGNITION ACOUSTIC MODELS IN A FEDERATED LEARNING FRAMEWORK

Natalia Tomashenko¹, Salima Mdhaffar¹, Marc Tommasi², Yannick Estève¹, Jean-François Bonastre¹

¹LIA – University of Avignon – France

3

Introduction

Context

- Federated learning: collaborative training of machine learning models while keeping the raw training data decentralized.
- Automatic speech recognition (ASR) acoustic models (AM).
- Indirect privacy leakage: adversary can access the model parameters and aims to infer information about the speaker identity.

Research question

(speaker) information in neural network AMs?

Proposed approach

• Use an external indicator dataset to analyze the footprint of AMs on this data.

Federated learning and privacy preservation scenario

- Users (clients): share their personalized model updates with the server; \bigcirc no speech data is transmitted.
- Attacker has access: global model W_a & personalized model W_s of the target speaker *s* enrolled in the FL system & other personalized models of speakers: W_{S_1}, \ldots, W_{S_N} .
- Attacker's objective: automatic speaker verification (ASV) by using the enrollment model W_s and test trials in the form of models W_{S_1}, \ldots, W_{S_N} .

Experimental results

Data and models

	Train-G Global model	Part-1 Train	Part-2 Test	Indicator
Duration, h	200	86	73	0.5
# speakers	880	736	634	,32
# models	-	1300	1079	-

TED-LIUM 3 corpus Adaptation data for personalized models W_{s} : 4 minutes per model

Results: A1 & A2 EER,%					
Attack model	Hidden layer #1	Hidden layer #5			
A1	0.86	7.11			
A2	12.31	1.94			

² Inria – University of Lille – France

Attack models

Approach: capture information about the identity of speaker *s* from the corresponding speaker-adapted model W_s and the global model W_a by comparing the outputs of these two neural AMs taken from hidden layers h on some external speech dataset \rightarrow analyze the footprint of the NN model on the indicator data.

Conclusions

5

- ASR acoustic models are vulnerable to privacy attacks which aim to infer speaker identity from the updated (personalized) models.
- We propose an efficient method to analyze information in neural network AMs based on a neural network footprint on the indicator dataset.
- On the TED-LIUM 3 corpus both attack models are shown to be very effective:
 - EER=1% for the simple attack model **A1**.
 - EER=2% for the NN attack model A2.
- The first layer of personalized AMs contains a large amount of speaker information that is mainly contained in the standard deviation values computed on the indicator dataset.
- Future work: developing an efficient ASV system based on this property of the adapted NN models

