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/ Dataset: YT-U [1]
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Dataset creation process:

1.

Randomly collect 3 million hours of
audio from "speech-heavy"
YouTube videos, including lectures,
news and interviews, filtered by
language.

Remove non-speech segments to
yield approximately a million hours
of unlabeled audio data.

Uniformly sampled to 16 KHz
quality—any audio with a different
native sampling rate is either
up-sampled or downsampled.


https://arxiv.org/pdf/2109.13226.pdf

/ Conformer [1]
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Wav2Vec 2.0 training [1]
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Fig. 3: The Conformer encoder and wav2vec 2.0 pre-training.
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/ Evaluation [1]
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https://arxiv.org/abs/2002.12764

Evaluation datasets / tasks

Table 2: Downstream evaluation datasets. *Results in our study used a subset
of Voxceleb filtered according to YouTube’s privacy guidelines.

Avg
Dataset Target Classes  Samples length (s)
VoxCeleb* [32] Speaker ID 1,251 12,052 8.4
VoxForge [33] Language ID 6 176,438 5.8
Speech
Commands[34] Command 12 100,503 1.0
Masked i
Speech [19] Mask wearing 2 36,554 1.0
ASVSpoof [20]  >ynthetic 2 121,461 3.2
or not
Euphonia [22] Dysarthria 5 15,224 6.4
CREMA-D [35] Emotion 6 7,438 25
IEMOCAP [21] Emotion 4 5,531 4.5
SAVEE [36] Emotion 7 480 3.8







/ Main result [1]

Speech Masked ASVSpoof :
T pe p # E Tt
Model Voxcelebl Voxforge Commants Speech? 2019** Euphonia CREMA-D IEMOCAP SAVEE
Prev SoTA | - 95.4 [37] 97.9 [38] 73.0 [39] 5.11[17] 45.9 [11] 74.0* [40] 67.61 [17]  84.0* [36]
Baselines
YAMNett+ [1] 10.9 79.8 78.5 59.7 9.23 43.0 66.4 57.5 69.2
TRILL [1] 12.6 84.5 77.6 65.2 7.46 48.1 65.7 54.3 65.0
FRILL [18] 13.8 78.8 74.4 67.2 7.45 46.6 71.3 57.6 63.3
COLA [2] 11.7 71.0 60.6 65.0 4.58 47.6 69.3 63.9 59.2
ASR Emb [11] 52 98.9 96.1 54.4 11.2 54.5 71.8 65.4 85.0
Conformers
Best per-task$ 53.5 99.8 97.5 74.2 2.5 53.6 87.2 79.2 92.5
(model, layer #) | (XXL-YT,25) (G-YT,19) (CAP, 16) (XL-LLRA,5) (CAP, 12) (CAP, 13) (G, 26) (CAP, 15) (CAP, 15)
Best CAP per §
task (layer #) 50.3 (11) 99.7 (14) 97.5 (16) 73.4 (10) 2.5(12) 53.6 (13) 88.23 (12) 79.2 (15) 92.5 (15)
Best single § §
layer (CAP12) 51.0 99.7 97.0 68.9 2.5 51.5 88.2 75.0 81.7

e Top row (Prev SoTA) has task-specific models that are arbitrarily complex. The others
come from linear models on time-averaged candidate embeddings

e “Conformers” are the category of model that we explored in this study

e “CAP’” is the name of our model with the best overall paralinguistic representations

e “CAP12" is the name of the overall best performing representation (layer 12 of CAP)


https://arxiv.org/abs/2110.04621

/ Analysis 1: How important is the Conformer’s large context

window?
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: : : intermediate layers but lost
W4 7 7 in the final layers

5 10 15 20
Conformer Layer Number

Average accuracy measure




/ Analysis 2: Which tasks require larger context?
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e Speech emotion recognition
and speaker ID tasks require
larger context windows

e Lang ID, mask challenge,
fake speech are fine with 1
sec
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Analysis 3: Are better representations complementary or
strictly better?

Each square is the probability that
Model Y correctly predicts an
example given that Model X and
Model Y disagree on the
prediction. The result is averaged
over task.
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/ Analysis 1: How similar are representations of different
layers, and different networks?
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Linear CKA scores between all pairs of layers: (left) within
the Conformer XL YT network and (right) across the top
performing Conformer XL YT and XXL YT networks. The
colormap is truncated at 0.7 as is common to both images



/ Observation 1: The representations are similar between
different networks as a fraction of network depth
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e Peaks occur at similar
fractional layer
e Overall shape is similar

Aggregate NOSS score for 6 different Conformer models as a
function of layer index normalized to [0.0, 1.0] using (layer #) /
(# of layers), where # of layers is different for different models



