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❑ We employ the first-order Taylor series approximation (termed

Extended Variational Density Propagation, i.e., exVDP) for

estimating the first two moments of the variational distribution after

non-linear activation functions in DNNs.

❑ We develop the Unscented Variational Density Propagation, i.e.,

unVDP model for approximating the posterior distribution using

the unscented transformation (UT). The UT propagates sigma

points through the network’s layers and results in a posterior

approximation that can tackle non-Gaussian distributions and is

accurate at least up to the second-order [1].

❑ We establish superior robustness by analyzing the models’

performance (compared to the state-of-the-art DNNs’

performance) under noisy conditions and adversarial attacks.

❑We introduce a prior distribution over the network weights 𝛀 ∼ 𝒑(𝛀) and
estimate the posterior distribution of the weights given the data, 𝐷,  using 

variational inference (VI). 

❑VI method approximates the true posterior 𝒑(𝛀|𝑫) with a simpler parametrized 

variational distribution 𝒒𝝓(𝛀). The optimal parameters of the variational 

posterior 𝜙∗ are estimated by minimizing the Kullback-Leibler (KL) divergence 

between the approximate and the true posterior [2].

❑The optimization objective is given by the evidence lower bound (ELBO), 

❑We build the mathematical foundation of the variational density propagation by 

deriving the propagation of the mean and covariance of the variational 

distribution 𝒒𝝓(𝛀) through a convolutional layer, activation function, 

maxpooling, fully-connected layer, soft-max function, batch normalization and 

a skip connection mapping.

❑We approximate the mean and covariance after a non-linear activation 

function 𝝍 using the first-order Taylor series approximation [3]. The model is 

named Extended Variational Density Propagation, i.e., exVDP.

where ∇ is the gradient with respect to 𝒛(𝑘𝑐) and ⨀ is the Hadamard product. 

❑ The unscented transformation (UT) approximates the mean and covariance 

after a non-linear transformation with one or two orders of magnitude better 

than the first-order approximation in the exVDP model.

❑ The UT assures that the estimated mean and covariance are correct, at least 

up to the second-order [4].

❑ In the UT framework, the probability density function (pdf) is specified using a 

set of carefully chosen samples, called sigma points. The model is named 

Unscented Variational Density Propagation, i.e., unVDP .

Variational Density Propagation
Table 1: CIFAR-10 Test accuracy using deep CNN (11 layers) and ResNet (18 layers) architectures at 

varying levels of white and black FGSM and PGD adversarial attacks.

Figure 3: (a) and (b) Average

variance values vs. signal-to-

noise ratio (SNR) for varying

levels of Gaussian and

adversarial noise for exVDP

and unVDP, respectively. The

variance values are averaged

over all 10,000 test examples

of the MNIST dataset and the

lightly filled areas represent

the standard deviation. (c)

and (d) Average test accuracy

vs. SNR for exVDP and

unVDP, respectively.
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Deep neural networks (DNNs) have surpassed human-level

accuracy in various learning tasks. However, DNNs cannot express

their uncertainty in the output decisions. This limits the deployment

of DNNs in mission-critical domains. Bayesian inference provides a

principled approach to reason about model’s uncertainty by

estimating the posterior distribution of the unknown

parameters. This paper establishes the theoretical and algorithmic

foundations of uncertainty or belief propagation by developing new

deep learning models named PremiUm-CNNs. We introduce a

tensor normal distribution as a prior over convolutional kernels and

estimate the variational posterior by maximizing the evidence lower

bound (ELBO). We start by deriving the first-order mean-covariance

propagation framework. Later, we develop a framework based on

the unscented transformation (correct at least up to the second-

order) that propagates sigma points of the variational distribution

through layers of a CNN. The propagated covariance of the

predictive distribution captures uncertainty in the output decision.

Figure 1: A schematic layout of the proposed PremiUm-CNN. We show the

propagation of the variational density through a convolutional layer, activation

function, max-pooling, fully-connected layer and a soft-max function. The

convolutional kernels, extracted features, the output of activation functions, logits,

and the soft-max function output are all random variables.

ℒ 𝜙; 𝒚 |𝓧 = 𝐸𝑞𝜙 𝛀 log 𝑝 𝒚 |𝓧,𝛀 − KL 𝑞𝜙 𝛀 ||𝑝 𝛀

Figure 2: A schematic description of the unscented transformation (UT). We approximate the

mean and covariance of a 2D Gaussian after a non-linear function 𝝍 using 4 sigma points.

Noise Type and 

levels
unVDP unVDPB exVDP exVDPB

Dropout-

CNN
VDP-ResNET VDP-ResNETB ResNet

No Noise 91.7%
—

91.8% — 91.7% 90.0% — 91.1%

FGSM

Low 91.2% 91.5% 91.2% 91.4% 96.8% 89.2% 89.4% 82.4%

Medium 83.4% 91.4% 83.8% 91.2% 65.9% 83.6% 86.2% 56.1%

High 71.1% 88.8% 70.6% 89.1% 56.9% 79.1% 79.0% 47.5%

PGD

Low 91.1% 91.4% 91.2% 91.4% 85.5% 88.6% 89.8% 75.1%

Medium 82.8% 91.1% 82.2% 91.0% 54.7% 78.4% 85.5% 23.3%

High 70.5% 88.6% 69.7% 88.5% 42.9% 69.8% 79.3% 13.8%

Figure 4: The heat-maps representing

the average of the covariance matrices

at the output of exVDP and unVDP

models for all 10,000 MNIST test

examples. (a) noise-free, (b) Gaussian

noise, and (c) adversarial noise. The

adversarial examples were generated

to fool the models into predicting and

image as digit “3”.


