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• Spread of smart devices               Exponential data growth
• Most of the collected data is without labels.
• Labeling data is cumbersome and expensive.

A. Source: IDC DataAge 2025 whitepaper 

Background and Motivation 
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Background and Motivation 

• Do we really need labels?
• How can a neural network learn representations without labels?

• A promising approach: Contrastive Learning
• Learn the general features of a dataset by teaching the model 

which data points are similar or different. 
• Contrastive learning can also be combined with labels, i.e. GE2E 

Loss.

• How do we define similar datapoints?

• Standard approach: Create similar datapoints
• Augmentation.
• Split and duplicate.

• Our approach: Use structural information about the dataset.
• Data collection time information: utterances collected from 

an Alexa device within a short time period are mostly from a 
single speaker è self-supervised speaker recognition

https://unsplash.com/@fiteka?utm_source=medium&utm_medium=referral
https://unsplash.com/?utm_source=medium&utm_medium=referral
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Approach and Contributions

The Big Picture

Dialogue dataset from human-device interactions is an alternative unlabeled data source that can be 

leveraged for speaker recognition model pretraining.

Key Technical Components 

1. Extracting positive and negative pairs from unlabeled Alexa dialogue sessions: Utterances within a 

dialogue session provide positive pairs.  Utterances from different devices provide negative pairs. 

2. Self-supervised soft rejection: Dialogue “compactness” measure to reject incorrect/noisy positive pairs 

(e.g, arising due to multiple speakers). 

3. Fine-tuning: fine-tuning the pretrained model on a small labeled dataset yields results comparable to 

fully-supervised training on a much larger dataset.
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Proposed Framework
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Alexa Dialogue Sessions

Single Speaker
(Most of the dialogues)

Multi Speaker
(Some of the dialogues)
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Pretraining and Evaluation Dataset

• Alexa Dialogue Dataset (Pretraining)
• De-identified speech dialogues from Alexa devices.
• 927,000 dialogues -> 1800 hours of speech data. 

• Annotated Alexa Dataset (Evaluation)
• Randomly sampled de-identified utterances from a year’s traffic.
• Multiple human annotators.
• We only use samples with consistent annotation.
• We report the Equal Error Rate (EER) reduction values for models.
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Loss Functions 

• Some dialogues may contain utterances from different speakers.
• All-versus-all (AvA):
• avoiding the flawed centroid problem.
• increasing the effective number of negative pairs.

What is the best loss function for our problem?
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Naive Framework for Self-Supervised Training

• We get two utterances from each dialogue.
• Compute embeddings using the encoder model.
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Results of Pretraining

Training Data Method type Loss Function EER Reduction

VoxCeleb2 Supervised GE2E 0.0%

Alexa-Dialogue Self-supervised AvA +19.32%

Alexa-Dialogue Self-supervised GE2E +18.36%

Alexa-Dialogue Self-supervised A-Proto +18.78%

Batch size = 256 256 Dialogues

• Neural network learns speaker ID related features.

• Can we improve these results?
• How to reduce the impact of multi-speaker dialogues in the learning?

9
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IDEA: Reduce the effect of multi-speaker dialogues on learning by lowering the loss
contribution from the dialogues with lower compactness scores.

Soft Rejection Mechanism

0XOWL�6SHDNHU�'LDORJXH
6LQJOH�6SHDNHU�'LDORJXH

&RPSDFWQHVV

/RVV�:HLJKW



11

General Framework for Self-Supervised Training
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• We incorporate the soft rejection mechanism to eliminate multi-speaker 
dialogues along the way, without supervision.
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Results with Soft Rejection

• Soft Rejection mechanism Improves EER consistently for all three 
loss functions for different batch sizes.

• Helping the model focus on clean dialogues rather than noisy ones. 

Table 2: Pretraining and fine tuning results, our method outperforms all the other pretraining methods significantly over the speaker recogni-
tion task.
(a) Pretraining results. For each loss function, improvements relative
to batch size 32 without rejection are shown.

Loss Batch Size

32 64 128 256

All-vs-All 0.00% +2.91% +6.56% +8.20%
Rejection + All-vs-All +3.76% +7.65% +18.76% +19.00%
A-Proto 0.00% +7.32% +8.52% +12.93%
Rejection + A-proto +7.55% +12.58% +16.76% +25.85%
GE2E 0.00% +3.24% +3.06% +6.36%
Rejection + GE2E +10.64% +17.75% +17.99% +13.83%

(b) Fine-tuning results. For all experiments we take the model trained from scratch
as our baseline and report the relative improvement.

Pretraining Loss Episodes Labeled Dataset Speaker Count

1,024 2,048 4,096 8,192

- GE2E 1000 0.00% 0.00% 0.00% 0.00%

COLA GE2E 300 -8.81% -23.57% -37.07% -44.21%
APC GE2E 300 +24.34% +23.13% +19.48% +15.35%
VoxCeleb2 GE2E 300 +31.38% +25.91% +20.95% +15.61%
Dialogue+AvA (ours) GE2E 300 +40.18% +34.19% +31.10% +27.10%
Dialogue+A-Proto (ours) GE2E 300 +41.28% +34.77% +30.03% +26.57%
Dialogue+GE2E (ours) GE2E 300 +40.12% +32.86% +27.49% +23.42%

Table 3: Comparison of pretrained models, our method outperforms
reference model trained on the VoxCeleb2 labeled dataset without
fine-tuning. Its performance is even comparable to fully supervised
models trained on labeled Alexa datasets.

Training Data Method type Loss EER

Alexa Dialogue Self-supervised COLA -129.56%
Alexa Dialogue Self-supervised APC -108.32%
VoxCeleb2 Supervised GE2E 0%
Alexa (1024 spk) Supervised GE2E +12.75%
Alexa (2048 spk) Supervised GE2E +27.11%
Alexa (4096 spk) Supervised GE2E +34.79%
Alexa (8192 spk) Supervised GE2E +39.17%
Alexa Dialogue Self-supervised AvA +28.81%
Alexa Dialogue Self-supervised A-Proto +30.84%
Alexa Dialogue Self-supervised GE2E +28.49%

we further train four fully supervised models based on labeled Alexa
datasets with varying number of speakers.

There are three observations. First, we note that the pretrained
models COLA and APC are worse than the supervised model trained
on the VoxCeleb2 dataset. These two methods aim to learn gen-
eral audio features and they strongly depend on fine-tuning steps
in order to achieve comparable performance for a downstream task.
Therefore, they perform poorly on speaker recognition task with-
out fine-tuning. Second, the proposed model and its variants con-
sistently outperform the reference model trained on the VoxCeleb2
labeled dataset, with EER reduced by as much as 30.84% relative.
This clearly demonstrates the effectiveness of the proposed model
in exploiting implicit speaker information in human-machine dia-
logues. The utilization of Alexa human-machine dialogues helps
us overcome the domain mismatch between Alexa users and speech
from other sources, such as the YouTube excerpts assembled in Vox-
Celeb. Third, the proposed model achieves EER reductions compa-
rable to the models trained from scratch on Alexa labeled datasets.
For example, our best performing model achieves 30.84% EER re-
duction while the fully supervised model trained on the Alexa la-
beled 4096-speaker dataset achieves 34.79% reduction. This shows
that the proposed model trained with unlabeled dialogue data is ef-
fective in learning speaker identity features.

3.3. Model Performance after Fine-tuning

We fine-tune the pretrained network on different labeled Alexa
datasets with varying number of speakers, where the total utter-
ance duration for a speaker is around 150 seconds on average. All
fine-tuning results based on the various pretrained models are sum-
marized in Table 2b. Here the four models trained from scratch with

1024, 2048, 4096, and 8192 labeled speakers serve as the reference
baselines. Due to limited space, we show the fine-tuned model
performance for GE2E loss only.

There are four key observations. First, the pretrained COLA
model is not effective at learning speaker identities on the dialogue
data, as we observe performance drop compared to the model trained
from scratch for all four fine-tuning datasets. The utterances in dia-
logues are very short (one to two seconds duration). COLA further
separates each utterance into two segments in order to form positive
instances. Moreover, the background environment tends to be iden-
tical within the same utterance. Without massive and effective data
augmentations, COLA tends to perform poorly on speaker recogni-
tion tasks.

Second, we notice that the pretrained APC model [21] helps im-
prove the recognition performance with fine-tuning. For example,
compared with the model trained with 1024 speakers from scratch,
fine-tuning the APC model with the same labeled dataset improves
EER by 24.34%.

Third, fine-tuning the supervised model pretrained on the Vox-
Celeb2 dataset also helps improve the EER performance, in spite of
the domain mismatch between VoxCeleb2 (YouTube recordings) and
Alexa traffic. We observe 31.38% relative EER improvement when
the model is fine-tuned with 1,024 speakers.

Fourth, the proposed method achieves the largest relative EER
improvements on all four fine-tuning datasets compared to COLA,
APC, and the supervised model trained on the VoxCeleb2 dataset.
The best results are highlighted in bold in Table 2b. This demon-
strates the superiority of the proposed method for our speaker recog-
nition scenario, learning to distinguish speakers by selectively learn-
ing from the unlabeled human-machine dialogues.

4. CONCLUSIONS

We present a self-supervised learning method for speaker recog-
nition tasks designed to exploit implicit speaker identity informa-
tion in unlabeled human-machine dialogues. We propose an ef-
fective soft rejection mechanism to deal with dialogues containing
multiple speakers. Experiments on de-identified smart-speaker pro-
duction data show that the proposed algorithm is effective at han-
dling unsupervised speaker information, giving performance compa-
rable to supervised models. When used for model pretraining before
supervised training, our method reduces EER by up to 41% rela-
tive, compared to no pretraining, and is superior both to other self-
supervised pretraining methods and to pretraining on a large labeled
(but domain-mismatched) dataset.



13

Fine-Tuning Dataset

We fine-tune the pretrained network on different labeled Alexa datasets with 
varying number of speakers, where the total utterance duration for a speaker is 
around 150 seconds on average. 

• 1024 different speakers 150,000 seconds of utterances
• 2048 different speakers 300,000 seconds of utterances
• 4096 different speakers 600,000 seconds of utterances
• 8192 different speakers 1,200,000 seconds of utterances
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• Baseline: model trained from scratch using GE2E loss for 1000 episodes.

Results

Table 2: Pretraining and fine tuning results, our method outperforms all the other pretraining methods significantly over the speaker recogni-
tion task.
(a) Pretraining results. For each loss function, improvements relative
to batch size 32 without rejection are shown.

Loss Batch Size

32 64 128 256

All-vs-All 0.00% +2.91% +6.56% +8.20%
Rejection + All-vs-All +3.76% +7.65% +18.76% +19.00%
A-Proto 0.00% +7.32% +8.52% +12.93%
Rejection + A-proto +7.55% +12.58% +16.76% +25.85%
GE2E 0.00% +3.24% +3.06% +6.36%
Rejection + GE2E +10.64% +17.75% +17.99% +13.83%

(b) Fine-tuning results. For all experiments we take the model trained from scratch
as our baseline and report the relative improvement.

Pretraining Loss Episodes Labeled Dataset Speaker Count

1,024 2,048 4,096 8,192

- GE2E 1000 0.00% 0.00% 0.00% 0.00%

COLA GE2E 300 -8.81% -23.57% -37.07% -44.21%
APC GE2E 300 +24.34% +23.13% +19.48% +15.35%
VoxCeleb2 GE2E 300 +31.38% +25.91% +20.95% +15.61%
Dialogue+AvA (ours) GE2E 300 +40.18% +34.19% +31.10% +27.10%
Dialogue+A-Proto (ours) GE2E 300 +41.28% +34.77% +30.03% +26.57%
Dialogue+GE2E (ours) GE2E 300 +40.12% +32.86% +27.49% +23.42%

Table 3: Comparison of pretrained models, our method outperforms
reference model trained on the VoxCeleb2 labeled dataset without
fine-tuning. Its performance is even comparable to fully supervised
models trained on labeled Alexa datasets.

Training Data Method type Loss EER

Alexa Dialogue Self-supervised COLA -129.56%
Alexa Dialogue Self-supervised APC -108.32%
VoxCeleb2 Supervised GE2E 0%
Alexa (1024 spk) Supervised GE2E +12.75%
Alexa (2048 spk) Supervised GE2E +27.11%
Alexa (4096 spk) Supervised GE2E +34.79%
Alexa (8192 spk) Supervised GE2E +39.17%
Alexa Dialogue Self-supervised AvA +28.81%
Alexa Dialogue Self-supervised A-Proto +30.84%
Alexa Dialogue Self-supervised GE2E +28.49%

we further train four fully supervised models based on labeled Alexa
datasets with varying number of speakers.

There are three observations. First, we note that the pretrained
models COLA and APC are worse than the supervised model trained
on the VoxCeleb2 dataset. These two methods aim to learn gen-
eral audio features and they strongly depend on fine-tuning steps
in order to achieve comparable performance for a downstream task.
Therefore, they perform poorly on speaker recognition task with-
out fine-tuning. Second, the proposed model and its variants con-
sistently outperform the reference model trained on the VoxCeleb2
labeled dataset, with EER reduced by as much as 30.84% relative.
This clearly demonstrates the effectiveness of the proposed model
in exploiting implicit speaker information in human-machine dia-
logues. The utilization of Alexa human-machine dialogues helps
us overcome the domain mismatch between Alexa users and speech
from other sources, such as the YouTube excerpts assembled in Vox-
Celeb. Third, the proposed model achieves EER reductions compa-
rable to the models trained from scratch on Alexa labeled datasets.
For example, our best performing model achieves 30.84% EER re-
duction while the fully supervised model trained on the Alexa la-
beled 4096-speaker dataset achieves 34.79% reduction. This shows
that the proposed model trained with unlabeled dialogue data is ef-
fective in learning speaker identity features.

3.3. Model Performance after Fine-tuning

We fine-tune the pretrained network on different labeled Alexa
datasets with varying number of speakers, where the total utter-
ance duration for a speaker is around 150 seconds on average. All
fine-tuning results based on the various pretrained models are sum-
marized in Table 2b. Here the four models trained from scratch with

1024, 2048, 4096, and 8192 labeled speakers serve as the reference
baselines. Due to limited space, we show the fine-tuned model
performance for GE2E loss only.

There are four key observations. First, the pretrained COLA
model is not effective at learning speaker identities on the dialogue
data, as we observe performance drop compared to the model trained
from scratch for all four fine-tuning datasets. The utterances in dia-
logues are very short (one to two seconds duration). COLA further
separates each utterance into two segments in order to form positive
instances. Moreover, the background environment tends to be iden-
tical within the same utterance. Without massive and effective data
augmentations, COLA tends to perform poorly on speaker recogni-
tion tasks.

Second, we notice that the pretrained APC model [21] helps im-
prove the recognition performance with fine-tuning. For example,
compared with the model trained with 1024 speakers from scratch,
fine-tuning the APC model with the same labeled dataset improves
EER by 24.34%.

Third, fine-tuning the supervised model pretrained on the Vox-
Celeb2 dataset also helps improve the EER performance, in spite of
the domain mismatch between VoxCeleb2 (YouTube recordings) and
Alexa traffic. We observe 31.38% relative EER improvement when
the model is fine-tuned with 1,024 speakers.

Fourth, the proposed method achieves the largest relative EER
improvements on all four fine-tuning datasets compared to COLA,
APC, and the supervised model trained on the VoxCeleb2 dataset.
The best results are highlighted in bold in Table 2b. This demon-
strates the superiority of the proposed method for our speaker recog-
nition scenario, learning to distinguish speakers by selectively learn-
ing from the unlabeled human-machine dialogues.

4. CONCLUSIONS

We present a self-supervised learning method for speaker recog-
nition tasks designed to exploit implicit speaker identity informa-
tion in unlabeled human-machine dialogues. We propose an ef-
fective soft rejection mechanism to deal with dialogues containing
multiple speakers. Experiments on de-identified smart-speaker pro-
duction data show that the proposed algorithm is effective at han-
dling unsupervised speaker information, giving performance compa-
rable to supervised models. When used for model pretraining before
supervised training, our method reduces EER by up to 41% rela-
tive, compared to no pretraining, and is superior both to other self-
supervised pretraining methods and to pretraining on a large labeled
(but domain-mismatched) dataset.
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• COLA[1] framework does not provide a good pretraining mechanism.
• Voxceleb2 and APC[2] frameworks improve performance with the learned 

representations.

Results

Table 2: Pretraining and fine tuning results, our method outperforms all the other pretraining methods significantly over the speaker recogni-
tion task.
(a) Pretraining results. For each loss function, improvements relative
to batch size 32 without rejection are shown.

Loss Batch Size

32 64 128 256

All-vs-All 0.00% +2.91% +6.56% +8.20%
Rejection + All-vs-All +3.76% +7.65% +18.76% +19.00%
A-Proto 0.00% +7.32% +8.52% +12.93%
Rejection + A-proto +7.55% +12.58% +16.76% +25.85%
GE2E 0.00% +3.24% +3.06% +6.36%
Rejection + GE2E +10.64% +17.75% +17.99% +13.83%

(b) Fine-tuning results. For all experiments we take the model trained from scratch
as our baseline and report the relative improvement.

Pretraining Loss Episodes Labeled Dataset Speaker Count

1,024 2,048 4,096 8,192

- GE2E 1000 0.00% 0.00% 0.00% 0.00%

COLA GE2E 300 -8.81% -23.57% -37.07% -44.21%
APC GE2E 300 +24.34% +23.13% +19.48% +15.35%
VoxCeleb2 GE2E 300 +31.38% +25.91% +20.95% +15.61%
Dialogue+AvA (ours) GE2E 300 +40.18% +34.19% +31.10% +27.10%
Dialogue+A-Proto (ours) GE2E 300 +41.28% +34.77% +30.03% +26.57%
Dialogue+GE2E (ours) GE2E 300 +40.12% +32.86% +27.49% +23.42%

Table 3: Comparison of pretrained models, our method outperforms
reference model trained on the VoxCeleb2 labeled dataset without
fine-tuning. Its performance is even comparable to fully supervised
models trained on labeled Alexa datasets.

Training Data Method type Loss EER

Alexa Dialogue Self-supervised COLA -129.56%
Alexa Dialogue Self-supervised APC -108.32%
VoxCeleb2 Supervised GE2E 0%
Alexa (1024 spk) Supervised GE2E +12.75%
Alexa (2048 spk) Supervised GE2E +27.11%
Alexa (4096 spk) Supervised GE2E +34.79%
Alexa (8192 spk) Supervised GE2E +39.17%
Alexa Dialogue Self-supervised AvA +28.81%
Alexa Dialogue Self-supervised A-Proto +30.84%
Alexa Dialogue Self-supervised GE2E +28.49%

we further train four fully supervised models based on labeled Alexa
datasets with varying number of speakers.

There are three observations. First, we note that the pretrained
models COLA and APC are worse than the supervised model trained
on the VoxCeleb2 dataset. These two methods aim to learn gen-
eral audio features and they strongly depend on fine-tuning steps
in order to achieve comparable performance for a downstream task.
Therefore, they perform poorly on speaker recognition task with-
out fine-tuning. Second, the proposed model and its variants con-
sistently outperform the reference model trained on the VoxCeleb2
labeled dataset, with EER reduced by as much as 30.84% relative.
This clearly demonstrates the effectiveness of the proposed model
in exploiting implicit speaker information in human-machine dia-
logues. The utilization of Alexa human-machine dialogues helps
us overcome the domain mismatch between Alexa users and speech
from other sources, such as the YouTube excerpts assembled in Vox-
Celeb. Third, the proposed model achieves EER reductions compa-
rable to the models trained from scratch on Alexa labeled datasets.
For example, our best performing model achieves 30.84% EER re-
duction while the fully supervised model trained on the Alexa la-
beled 4096-speaker dataset achieves 34.79% reduction. This shows
that the proposed model trained with unlabeled dialogue data is ef-
fective in learning speaker identity features.

3.3. Model Performance after Fine-tuning

We fine-tune the pretrained network on different labeled Alexa
datasets with varying number of speakers, where the total utter-
ance duration for a speaker is around 150 seconds on average. All
fine-tuning results based on the various pretrained models are sum-
marized in Table 2b. Here the four models trained from scratch with

1024, 2048, 4096, and 8192 labeled speakers serve as the reference
baselines. Due to limited space, we show the fine-tuned model
performance for GE2E loss only.

There are four key observations. First, the pretrained COLA
model is not effective at learning speaker identities on the dialogue
data, as we observe performance drop compared to the model trained
from scratch for all four fine-tuning datasets. The utterances in dia-
logues are very short (one to two seconds duration). COLA further
separates each utterance into two segments in order to form positive
instances. Moreover, the background environment tends to be iden-
tical within the same utterance. Without massive and effective data
augmentations, COLA tends to perform poorly on speaker recogni-
tion tasks.

Second, we notice that the pretrained APC model [21] helps im-
prove the recognition performance with fine-tuning. For example,
compared with the model trained with 1024 speakers from scratch,
fine-tuning the APC model with the same labeled dataset improves
EER by 24.34%.

Third, fine-tuning the supervised model pretrained on the Vox-
Celeb2 dataset also helps improve the EER performance, in spite of
the domain mismatch between VoxCeleb2 (YouTube recordings) and
Alexa traffic. We observe 31.38% relative EER improvement when
the model is fine-tuned with 1,024 speakers.

Fourth, the proposed method achieves the largest relative EER
improvements on all four fine-tuning datasets compared to COLA,
APC, and the supervised model trained on the VoxCeleb2 dataset.
The best results are highlighted in bold in Table 2b. This demon-
strates the superiority of the proposed method for our speaker recog-
nition scenario, learning to distinguish speakers by selectively learn-
ing from the unlabeled human-machine dialogues.

4. CONCLUSIONS

We present a self-supervised learning method for speaker recog-
nition tasks designed to exploit implicit speaker identity informa-
tion in unlabeled human-machine dialogues. We propose an ef-
fective soft rejection mechanism to deal with dialogues containing
multiple speakers. Experiments on de-identified smart-speaker pro-
duction data show that the proposed algorithm is effective at han-
dling unsupervised speaker information, giving performance compa-
rable to supervised models. When used for model pretraining before
supervised training, our method reduces EER by up to 41% rela-
tive, compared to no pretraining, and is superior both to other self-
supervised pretraining methods and to pretraining on a large labeled
(but domain-mismatched) dataset.

[1] Saeed, Aaqib, David Grangier, and Neil Zeghidour. "Contrastive learning of general-purpose audio representations." ICASSP 2021-2021 IEEE International Conference on Acoustics, 
Speech and Signal Processing (ICASSP). IEEE, 2021.
[2] Chung, Yu-An, and James Glass. "Generative pre-training for speech with autoregressive predictive coding." ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and 
Signal Processing (ICASSP). IEEE, 2020.
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• Dialogue pretraining outperforms all the other pretraining methods compared 
with.

Results

Table 2: Pretraining and fine tuning results, our method outperforms all the other pretraining methods significantly over the speaker recogni-
tion task.
(a) Pretraining results. For each loss function, improvements relative
to batch size 32 without rejection are shown.

Loss Batch Size

32 64 128 256

All-vs-All 0.00% +2.91% +6.56% +8.20%
Rejection + All-vs-All +3.76% +7.65% +18.76% +19.00%
A-Proto 0.00% +7.32% +8.52% +12.93%
Rejection + A-proto +7.55% +12.58% +16.76% +25.85%
GE2E 0.00% +3.24% +3.06% +6.36%
Rejection + GE2E +10.64% +17.75% +17.99% +13.83%

(b) Fine-tuning results. For all experiments we take the model trained from scratch
as our baseline and report the relative improvement.

Pretraining Loss Episodes Labeled Dataset Speaker Count

1,024 2,048 4,096 8,192

- GE2E 1000 0.00% 0.00% 0.00% 0.00%

COLA GE2E 300 -8.81% -23.57% -37.07% -44.21%
APC GE2E 300 +24.34% +23.13% +19.48% +15.35%
VoxCeleb2 GE2E 300 +31.38% +25.91% +20.95% +15.61%
Dialogue+AvA (ours) GE2E 300 +40.18% +34.19% +31.10% +27.10%
Dialogue+A-Proto (ours) GE2E 300 +41.28% +34.77% +30.03% +26.57%
Dialogue+GE2E (ours) GE2E 300 +40.12% +32.86% +27.49% +23.42%

Table 3: Comparison of pretrained models, our method outperforms
reference model trained on the VoxCeleb2 labeled dataset without
fine-tuning. Its performance is even comparable to fully supervised
models trained on labeled Alexa datasets.

Training Data Method type Loss EER

Alexa Dialogue Self-supervised COLA -129.56%
Alexa Dialogue Self-supervised APC -108.32%
VoxCeleb2 Supervised GE2E 0%
Alexa (1024 spk) Supervised GE2E +12.75%
Alexa (2048 spk) Supervised GE2E +27.11%
Alexa (4096 spk) Supervised GE2E +34.79%
Alexa (8192 spk) Supervised GE2E +39.17%
Alexa Dialogue Self-supervised AvA +28.81%
Alexa Dialogue Self-supervised A-Proto +30.84%
Alexa Dialogue Self-supervised GE2E +28.49%

we further train four fully supervised models based on labeled Alexa
datasets with varying number of speakers.

There are three observations. First, we note that the pretrained
models COLA and APC are worse than the supervised model trained
on the VoxCeleb2 dataset. These two methods aim to learn gen-
eral audio features and they strongly depend on fine-tuning steps
in order to achieve comparable performance for a downstream task.
Therefore, they perform poorly on speaker recognition task with-
out fine-tuning. Second, the proposed model and its variants con-
sistently outperform the reference model trained on the VoxCeleb2
labeled dataset, with EER reduced by as much as 30.84% relative.
This clearly demonstrates the effectiveness of the proposed model
in exploiting implicit speaker information in human-machine dia-
logues. The utilization of Alexa human-machine dialogues helps
us overcome the domain mismatch between Alexa users and speech
from other sources, such as the YouTube excerpts assembled in Vox-
Celeb. Third, the proposed model achieves EER reductions compa-
rable to the models trained from scratch on Alexa labeled datasets.
For example, our best performing model achieves 30.84% EER re-
duction while the fully supervised model trained on the Alexa la-
beled 4096-speaker dataset achieves 34.79% reduction. This shows
that the proposed model trained with unlabeled dialogue data is ef-
fective in learning speaker identity features.

3.3. Model Performance after Fine-tuning

We fine-tune the pretrained network on different labeled Alexa
datasets with varying number of speakers, where the total utter-
ance duration for a speaker is around 150 seconds on average. All
fine-tuning results based on the various pretrained models are sum-
marized in Table 2b. Here the four models trained from scratch with

1024, 2048, 4096, and 8192 labeled speakers serve as the reference
baselines. Due to limited space, we show the fine-tuned model
performance for GE2E loss only.

There are four key observations. First, the pretrained COLA
model is not effective at learning speaker identities on the dialogue
data, as we observe performance drop compared to the model trained
from scratch for all four fine-tuning datasets. The utterances in dia-
logues are very short (one to two seconds duration). COLA further
separates each utterance into two segments in order to form positive
instances. Moreover, the background environment tends to be iden-
tical within the same utterance. Without massive and effective data
augmentations, COLA tends to perform poorly on speaker recogni-
tion tasks.

Second, we notice that the pretrained APC model [21] helps im-
prove the recognition performance with fine-tuning. For example,
compared with the model trained with 1024 speakers from scratch,
fine-tuning the APC model with the same labeled dataset improves
EER by 24.34%.

Third, fine-tuning the supervised model pretrained on the Vox-
Celeb2 dataset also helps improve the EER performance, in spite of
the domain mismatch between VoxCeleb2 (YouTube recordings) and
Alexa traffic. We observe 31.38% relative EER improvement when
the model is fine-tuned with 1,024 speakers.

Fourth, the proposed method achieves the largest relative EER
improvements on all four fine-tuning datasets compared to COLA,
APC, and the supervised model trained on the VoxCeleb2 dataset.
The best results are highlighted in bold in Table 2b. This demon-
strates the superiority of the proposed method for our speaker recog-
nition scenario, learning to distinguish speakers by selectively learn-
ing from the unlabeled human-machine dialogues.

4. CONCLUSIONS

We present a self-supervised learning method for speaker recog-
nition tasks designed to exploit implicit speaker identity informa-
tion in unlabeled human-machine dialogues. We propose an ef-
fective soft rejection mechanism to deal with dialogues containing
multiple speakers. Experiments on de-identified smart-speaker pro-
duction data show that the proposed algorithm is effective at han-
dling unsupervised speaker information, giving performance compa-
rable to supervised models. When used for model pretraining before
supervised training, our method reduces EER by up to 41% rela-
tive, compared to no pretraining, and is superior both to other self-
supervised pretraining methods and to pretraining on a large labeled
(but domain-mismatched) dataset.



• Temporal proximity provides a valuable pseudo-label which can be leveraged to 
learn speaker-ID related features.
• A self-supervised soft rejection mechanism is very effective to deal with false 

positive pair problem in this context.

• Is self-supervised pretraining still useful if we have access to a large labeled 
dataset?
• Can adding a small labeled dataset to self-supervised pretraining improve focus on 

speaker ID?
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