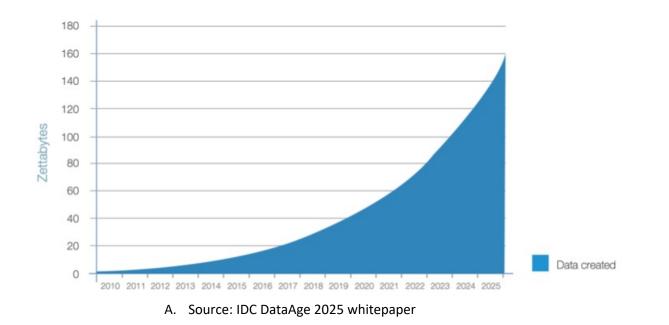
Self-supervised Speaker Recognition Training Using Human-Machine Dialogues

Metehan Cekic^{1*}, Ruirui Li², Zeya Chen², Yuguang Yang², Andreas Stolcke², Upamanyu Madhow¹

> ¹University of California, Santa Barbara ²Amazon Alexa Al

> > *Work done during an internship at Amazon

Background and Motivation



- Spread of smart devices —— Exponential data growth
- Most of the collected data is **without labels**.
- Labeling data is cumbersome and expensive.

amazon alexa

Background and Motivation

- Do we really need labels?
 - How can a neural network learn representations without labels?
- A promising approach: Contrastive Learning
 - Learn the **general features of a dataset** by teaching the model which **data points** are **similar or different**.
 - Contrastive learning can also be combined with labels, i.e. GE2E Loss.
- How do we define similar datapoints?
- Standard approach: Create similar datapoints
 - Augmentation.
 - Split and duplicate.
- Our approach: Use structural information about the dataset.
 - Data collection time information: utterances collected from an Alexa device within a short time period are mostly from a single speaker → self-supervised speaker recognition

The Big Picture

Dialogue dataset from human-device interactions is an **alternative unlabeled data source** that can be leveraged for **speaker recognition model** pretraining.

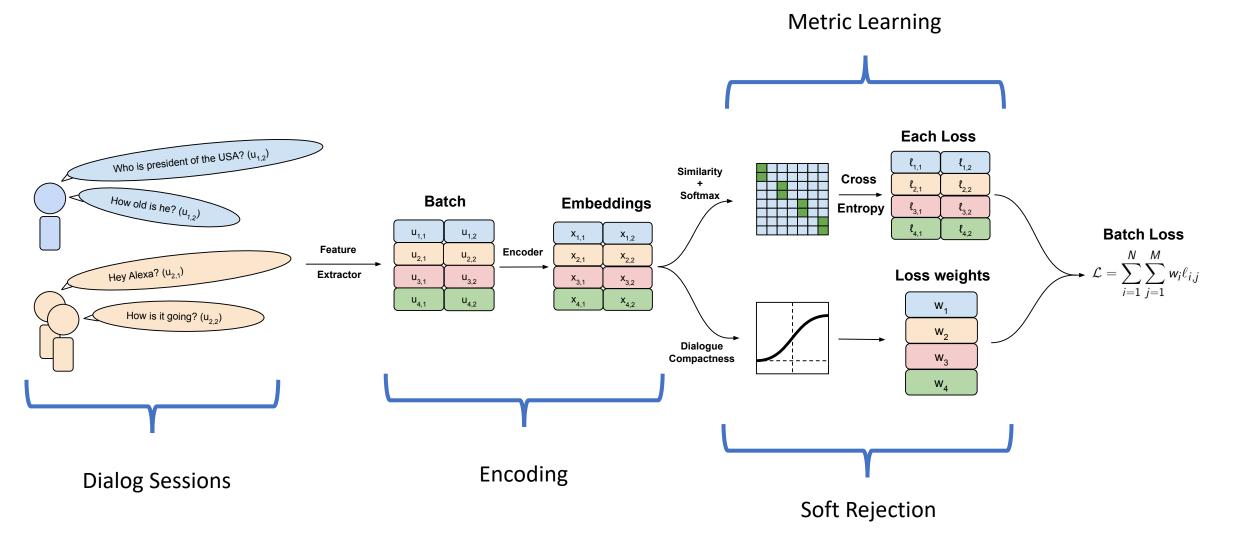
Key Technical Components

1. Extracting positive and negative pairs from unlabeled Alexa dialogue sessions: Utterances within a

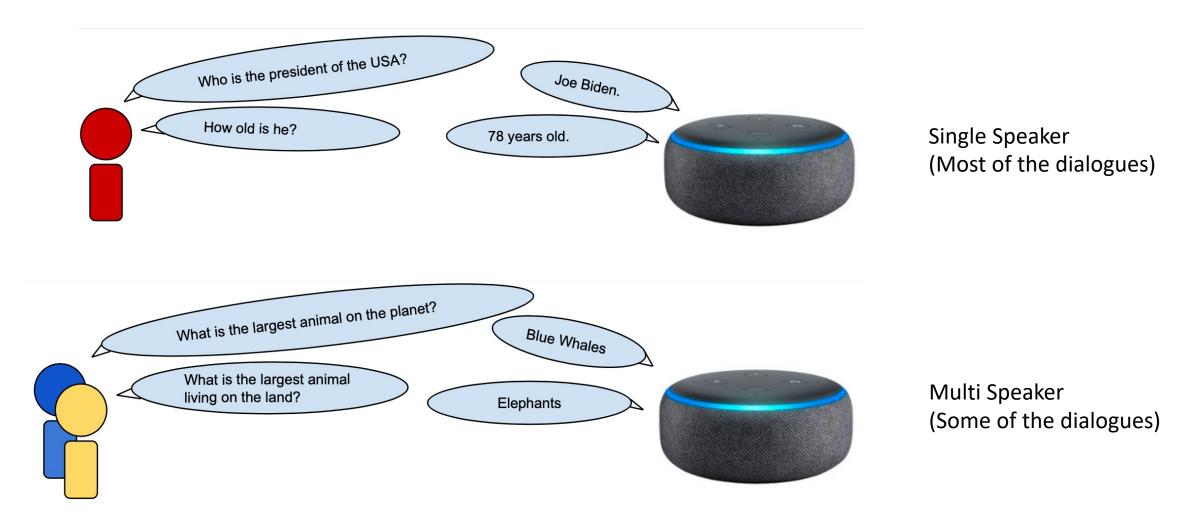
dialogue session provide positive pairs. Utterances from different devices provide negative pairs.

- 2. Self-supervised soft rejection: Dialogue "compactness" measure to reject incorrect/noisy positive pairs (e.g, arising due to multiple speakers).
- **3. Fine-tuning:** fine-tuning the pretrained model on a **small labeled dataset** yields results comparable to fully-supervised training on a much larger dataset.

Proposed Framework



Alexa Dialogue Sessions

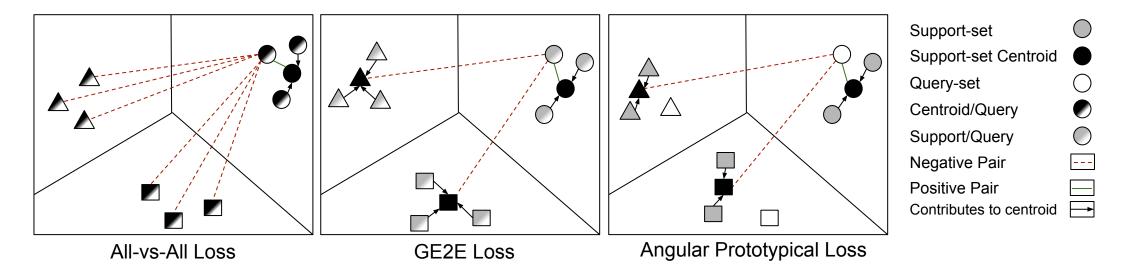


Pretraining and Evaluation Dataset

- Alexa Dialogue Dataset (Pretraining)
 - **De-identified speech dialogues** from Alexa devices.
 - 927,000 dialogues -> 1800 hours of speech data.
- Annotated Alexa Dataset (Evaluation)
 - Randomly sampled **de-identified utterances from a year's traffic**.
 - Multiple human annotators.
 - We only use samples with **consistent annotation**.
 - We report the Equal Error Rate (EER) reduction values for models.

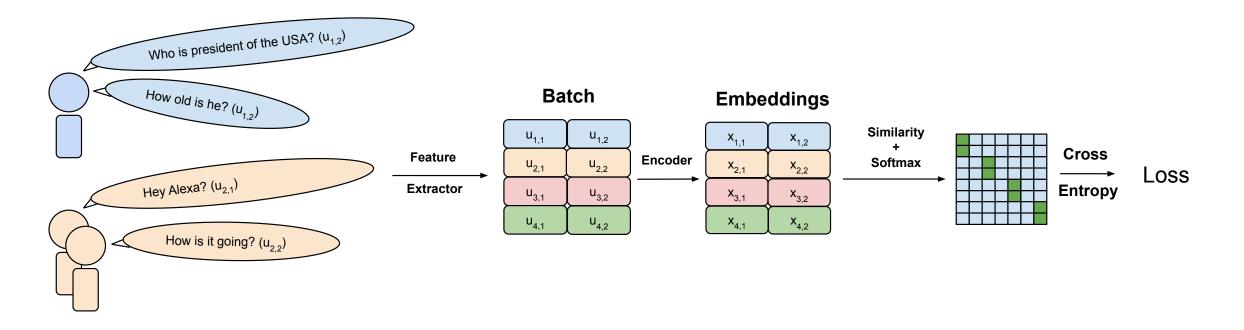
Loss Functions

What is the best loss function for our problem?



- Some dialogues may contain utterances from different speakers.
- All-versus-all (AvA):
 - avoiding the flawed centroid problem.
 - increasing the effective number of negative pairs.

Naive Framework for Self-Supervised Training



- We get two utterances from each dialogue.
- Compute embeddings using the encoder model.

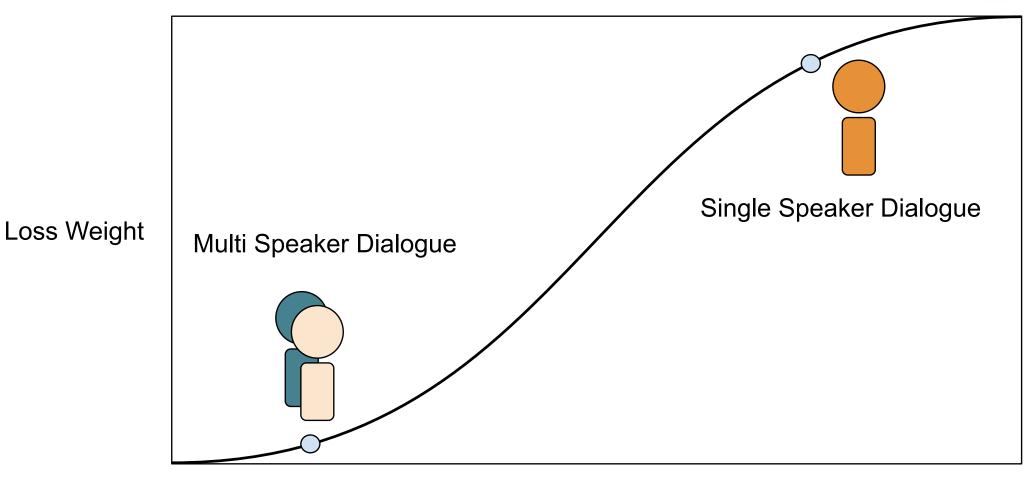
amazon alexa

Results of Pretraining

Training Data	Method type	Loss Function	EER Reduction
VoxCeleb2	Supervised	GE2E	0.0%
Alexa-Dialogue	Self-supervised	AvA	+19.32%
Alexa-Dialogue	Self-supervised	GE2E	+18.36%
Alexa-Dialogue	Self-supervised	A-Proto	+18.78%

- Neural network learns speaker ID related features.
- Can we improve these results?
 - How to **reduce the impact** of **multi-speaker dialogues** in the learning?

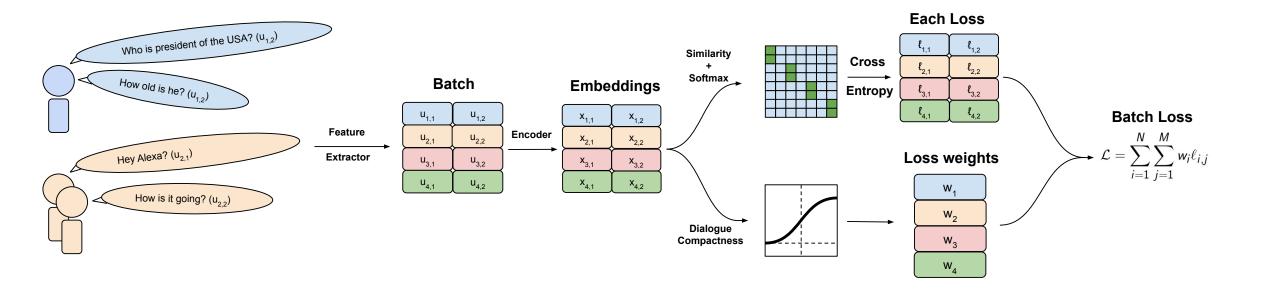
Soft Rejection Mechanism



Compactness

IDEA: Reduce the effect of multi-speaker dialogues on learning by **lowering** the loss **contribution** from the **dialogues with lower compactness scores**.

General Framework for Self-Supervised Training



 We incorporate the soft rejection mechanism to eliminate multi-speaker dialogues along the way, without supervision.

amazon alexa

Loss	Batch Size						
	32	64	128	256			
All-vs-All	0.00%	+2.91%	+6.56%	+8.20%			
Rejection + All-vs-All	+3.76%	+7.65%	+18.76%	+19.00%			
A-Proto	0.00%	+7.32%	+8.52%	+12.93%			
Rejection + A-proto	+7.55%	+12.58%	+16.76%	+25.85%			
GE2E	0.00%	+3.24%	+3.06%	+6.36%			
Rejection + GE2E	+10.64%	+17.75%	+17.99%	+13.83%			

- **Soft Rejection** mechanism **Improves EER** consistently for all three loss functions for different batch sizes.
- Helping the model **focus on clean dialogues** rather than noisy ones.

Fine-Tuning Dataset

We fine-tune the pretrained network on different **labeled Alexa datasets** with varying number of speakers, where **the total utterance duration for a speaker** is around **150 seconds** on average.

- 1024 different speakers → 150,000 seconds of utterances
- 2048 different speakers → 300,000 seconds of utterances
- 4096 different speakers → 600,000 seconds of utterances
- 8192 different speakers → 1,200,000 seconds of utterances

Pretraining	Loss	Episodes	Labeled Dataset Speaker Count			
			1,024	2,048	4,096	8,192
_	GE2E	1000	0.00%	0.00%	0.00%	0.00%

• Baseline: model trained from scratch using GE2E loss for 1000 episodes.

Pretraining	Loss	Episodes	Labeled Dataset Speaker Count			
			1,024	2,048	4,096	8,192
_	GE2E	1000	0.00%	0.00%	0.00%	0.00%
COLA	GE2E	300	-8.81%	-23.57%	-37.07%	-44.21%
APC	GE2E	300	+24.34%	+23.13%	+19.48%	+15.35%
VoxCeleb2	GE2E	300	+31.38%	+25.91%	+20.95%	+15.61%

• **COLA[1]** framework **does not provide a good pretraining mechanism**.

• Voxceleb2 and APC[2] frameworks improve performance with the learned representations.

[1] Saeed, Aaqib, David Grangier, and Neil Zeghidour. "Contrastive learning of general-purpose audio representations." ICASSP 2021-2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2021.

[2] Chung, Yu-An, and James Glass. "Generative pre-training for speech with autoregressive predictive coding." ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech a Signal Processing (ICASSP). IEEE, 2020.

Pretraining	Loss	Episodes	Labeled Dataset Speaker Count			
			1,024	2,048	4,096	8,192
-	GE2E	1000	0.00%	0.00%	0.00%	0.00%
COLA	GE2E	300	-8.81%	-23.57%	-37.07%	-44.21%
APC	GE2E	300	+24.34%	+23.13%	+19.48%	+15.35%
VoxCeleb2	GE2E	300	+31.38%	+25.91%	+20.95%	+15.61%
Dialogue+AvA (ours)	GE2E	300	+40.18%	+34.19%	+31.10%	+27.10%
Dialogue+A-Proto (ours)	GE2E	300	+41.28%	+34.77%	+30.03%	+26.57%
Dialogue+GE2E (ours)	GE2E	300	+40.12%	+32.86%	+27.49%	+23.42%

• **Dialogue pretraining outperforms** all the other pretraining methods compared with.

Conclusions

- **Temporal proximity** provides a **valuable pseudo-label** which can be leveraged to learn speaker-ID related features.
- A **self-supervised soft rejection** mechanism is **very effective** to deal with false positive pair problem in this context.

Future Work: Exploring the interaction between labels and self-supervision

- Is self-supervised pretraining still useful if we have access to a large labeled dataset?
- Can adding a small labeled dataset to self-supervised pretraining improve focus on speaker ID?

