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@ Introduction
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Motion Control in Mobile Relay Beamforming Networks

® Next Generation Networks need to accommodate high bandwidth
applications

® High bandwidth becomes available at high frequencies

® High frequencies experience high attenuation

® Relaying —> extend the communication range

® Mobile relays =—> more degrees of freedom = potentially
better performance

® We consider mobile relays =—> urban environments —-
spatiotemporally correlated channels
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Applications

Figure: Urban communications scenario

e Swarm of drones = vehicle-to-vehicle (V2V) or
vehicle-to-infrastructure (V2l) communications

® UAVs over a stadium = extended coverage and surveillance

® Group of drones = search-and-rescue missions
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Previous methods:

@ Assume knowledge of channels statistics — model-based
[Kalogerias, Petropulu, IEEE TSP, 2018]

® Relays move in 2 dimensions (Rectangular grid) [Huang, Mo,
IEEE WCNC, 2018] [Evmorfos, Petropulu, IEEE TSP, 2022]

©® Motion of the relays = discrete in space
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Our Contributions

® Our approach = model-free (no assumptions for channels
stats)

¢ We formulate the problem as a continuous MDP — motion
continuous in space (but discrete in time)

® Randomness of channels = stochastic policies

e We propose a soft actor-critic algorithm with Sinusoidal
Representation Networks for the critic

® Continuous control = necessary for performance and scaling in
3D motion

® Qur proposition = excellent performance in 2D and 3D motion
= without additional complexity or retuning
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@® Problem Formulation
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® Network with R mobile relays

® Source S, at position ps and Destination D at pp

® ps and pp can either belong in R? or in R?

® f(pi(t),t) is the channel from the source to the relay 4

® g(pi(t),t) is the channel from the relay i to the destination

® The channels exhibit correlations with respect to time and space
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LoS communication is not feasible, — R relays, each at position py(t)

Motion of the relays:

e Time-slotted (time slot denoted as t)

® Confined in a 2D plane or 3D cube

During every time slot ¢, each relay should:

@ Optimally beamform to destination (maximize SINR)

® Decide where to move for the next slot
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Signal Model

Source S transmits the symbol s(t) € C using power /Ps > 0

The signal received at the relay located at py(t) is

2k(t) = VP fi(pr, t)s(t) + ni(t), (1)

® f;.: source-relay channel for the k-th relay

® n,(t): reception noise at the k-th relay, white with variance o2
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Signal Model (2)

Each relay multiplies the signal, x(¢), by weight wy(t) € C
All R relays transmit the weighted signal simultaneously
The signal received at D equals

R

y(t) =D gr(Po, hwr(t)zk(t) + np(t), (2)

k=1

® gp: relay-destination channel for the k-th relay

® np(t): reception noise at the destination, assumed white with
variance 0%
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SINR at Destination

Maximum SINR solving w.r.t relay weights, s.t total power constraint:

Z PrPs|fx(pr, t)*gx (Pr, 1) ?
P UD|fk Pk, )|2 +PRU2|gk(pk,t)|2 +0.20.12)
R

Z (Pk,t) (3)

k=1

[Havary-Nassab et al, IEEE TSP, 2008]

® Ppr: Total power budget of the relays.

® Pg: Total power budget of the Source.
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© Deep Reinforcement Learning for Continuous Control
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Reinforcement Learning

Reinforcement Learning (RL) = Markov Decision
Process(MDP):

The agent, at every time step:
@ experiences state s;.
® chooses action a; from a continuous set of actions A.
© transitions to the next state s;y1.
O collects reward ;.
@ 7, discount factor: how far-sighted the agent is.

Goal: Learn a Policy for choosing actions, to maximize the expected
sum of discounted rewards:

Z’y by

t=t’
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Continuous Control vs Discrete Control

Previous works on relay motion — relays move in space in a discrete
fashion
The drawbacks of discrete control:

® The space needs to be discretized — large overhead + unrealistic

for real-world deployment

® |f motion is considered in the 3D space or better performance is
required — finer discretization — curse of dimensionality in
Dynamic Programming

For the above reasons, we consider continuous control — the relays
can move continuously in the space of interest
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Deep Actor-Critic Methods

Deep actor-critic = State-of-The-Art in model-free continuous
control

Model-free = deep neural nets for function approximation

¢ Critic (Value Function):

Neural Network: Learns expected sum of rewards from
state-action pair (MSE with bootstrapping)

¢ Actor (Policy Function):

Neural Network: Learns the action that maximizes the expected
sum of rewards from given state (policy gradient)
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O Proposed Method
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MDP for Continuous Relay Motion

To employ deep actor-critic we need to formulate an MDP

SINR expression is distributed, therefore we construct one MDP-Policy
shared by all relays

The MDP:

* state(s): position vector of the relay s = [z, v, 2]7 (or s = [z, y]"

for the 2D case)

e action(a): relay displacement vector a = [dz, dy, dz] (or
a = [dx,dy] for the 2D case)

¢ reward(r): relay’s contribution to the SINR at destination
‘/}(pkvt) = ‘/}(Svt)

e discount(y): quantification of how far sighted the agent (0.99)
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Constraints on the Relay Motion

Relay motion == continuous in space
But:
® Motion remains discrete w.r.t time
e Clip action to respect space boundaries
e Clip action to avoid collision

® During time displacement interval = channels do not change
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Soft Actor-Critic

Additional requirements for adopting deep actor-critic methods for
continuous relay control

e Off-policy: The policy learned = different than the one
generating the data

® Stochastic Policies: Channel randomness —> stochastic reward

Soft actor-critic (SAC): [Haarnoja, Zhou et al, ICML, 2018]

e Off-policy
® Stochastic policy
® Model-free continuous control

Vanilla SAC: Direct adoption of soft actor-critic for continuous relay
motion control = RelLU MLPs for approximating actor and critic
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Spectral Bias and Instability

Spectral Bias: Inability of ReLU MLPs to capture high frequencies in
low-dimensional regression [Tancik, Srinivasan et al, NeurlPS, 2020]

Actor-critic instability: if critic estimate is inaccurate = policy
updates accumulate error = suboptimal policy

Vanilla SAC:

® Critic — ReLU MLP — low-dimensional regression via
bootstrapping

® Channels are highly varying = underlying Value Function has
high frequencies

ReLU MLP for the critic = low quality policies
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SIRENs

The Sinusoidal Representation Network (SIREN) architecture was
introduced in [V.Sitzmann, J.Martel et al, 2020, NeurlPS] to tackle the
Spectral Bias of ReLU MLPs

It constitutes of:
® Dense layers

® Sinusoids as activation functions

The SIREN comes with an initialization scheme to handle the
periodicity of the activations between layers:

Figure: SIREN architecture - dense layers with sinusoidal activations
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SIREN SAC (Our Proposition)

We propose:

@ Soft actor-critic to solve the formulated MDP for continuous relay
motion control

® SIREN for parameterizing the critic

We denote our proposed method as SIREN SAC

S. Evmorfos ICASSP 2022, Singapore 24/ 38



@ Experiments
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Channel Data

We simulate channel data based on a known channel model with
spatiotemporal correlations [D. Kalogerias, A. Petropulu, TSP, 2018]
The log magnitude of the channel has 3 additive components:

® Pathloss

¢ Multipath (Gaussian i.i.d)

¢ Shadowing (correlation w.r.t time and space)

We perform 2 different sets of experiments
e for 2D plane (20?)
e for 3D cube (20?)
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Experiments in 2D
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Figure: Average SINR (in db) for 50 episodes (400 slots per episode and 12
different seeds) for the 2D case - 3 relays and 1 source-destination pair

**TD3: The counterpart of soft actor-critic with deterministic policy
—> ReLU MLPs [S.Fujimotto et al, ICML, 2018]
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Experiments in 3D
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Figure: Average SINR (in db) for 50 episodes (400 slots per episode and 12
different seeds) for the 3D case - 3 relays and 1 source-destination pair

**TD3: The counterpart of soft actor-critic with deterministic policy
—> ReLU MLPs [S.Fujimotto et al, ICML, 2018]
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e Every Network (MLP or SIREN) is comprised by 3 layers
® Each layer has 200 neurons

® batch size of 100 experiences

® the size of the Experience Replay is 1le+6

® Adam optimizer with learning rate of 2e-4
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Continuous Control Discussion

2D scenario

e Continuous control = freedom for relay motion = better
performance than Deep Q Learning with SIREN (discrete)
[Evmorfos, Petropulu et al, IEEE TSP, 2022]

3D scenario

e Continuous control = only viable solution, because
discretization induces curse of dimensionality = Deep Q
Learning cannot converge to good policies
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Results Discussion

® The employment of SIRENSs for Value Function approximation
provides significant improvement both in SINR and in stability

® The SIREN SAC algorithm retains the 2D performance in the 3D
case without additional complexity and tuning

® Employing SIRENSs for the TD3 provides no improvement
(testament for the necessity of stochastic policies)
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@ Conclusions
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Conclusions

® We have posed the problem of relay motion control in a
continuous model-free set up

® We have focused on off-policy deep actor-critic methods to keep
the sample complexity low, which is critical for real-world
deployment

® We have provided intuition on why stochastic policies are more
suitable than deterministic policies for the problem and verify this
with experiments

® We have proposed an adaptation of the soft actor-critic algorithm
with SIRENSs for Value Function approximation that provides
significant boost in overall performance

® We have validated the need for continuous control for scaling to
3D motion (and for better performance in 2D)

® The proposed variation retains the performance of the 2D scenario
on the 3D scenario without need for additional complexity or
retuning
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Reproducibility

® Code for SIREN SAC:
https://github.com/SpiliosEv/SoftActorCriticSIREN3D

® Code for Vanilla SAC:
https://github.com/SpiliosEv/SoftActorCriticVanilla3D

® Code for TD3:
https://github.com/SpiliosEv/TwinDelayed3D
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