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Video Summarization

Problem: An unsupervised linear-time complexity

key-frame selector for short videos

Prior Work:
Group 1: Heuristic or random based methods, sometimes fast but no
optimization objective, poorer performance [1]
Group 2: Optimization based with usually complex/approximate solution [2]
Our goal: Devise an optimization-based but linear-complexity solution with
advantages of both groups

Video model: Similarity Path Graph (SPG)
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The similarity metric is defined as:

Wi,i+1 := ‖fi − cos(θi,i+1)fi+1‖2 + ‖fi+1 − cos(θi,i+1)fi‖2

‖fi‖2 + ‖fi+1‖2
where θi,i+1 = ∠(fi, fi+1).

Graph Signal Processing (GSP)

GSP: Study of how to analyze and process data

associated with graphs [3]

Graph: G = (V , E , W)
Graph Signal: x ∈ RN

set of scalers associated to vertices

Combinatorial graph Laplacian matrix: L = D − W
where D is the degree matrix

GLR: xTLx captures signal smoothness w.r.t graph
Graph Laplacian Regularizer (a smoothness prior)

Graph Sampling

Problem of finding best subset of samples, y ∈ RC, such

that it cost least reconstruction error [4]

One particular objective of interest: [5]:

minx ‖y − Hx‖2
2 + µx>Lx (1)

The solution x∗:
H>H + µL


︸ ︷︷ ︸

B

x∗ = H>y

H is matrix of one-hot vectors then HTH := diag(a)

Equivalently find H to max λmin(B) [6]

Gershgorin Circle Theorem

(GCT)

GCT: each eigenvalue λ(A)
resides in at least one

Gershgorin disc [7]

Discs center and radius:
ci = Ai,i, ri = ∑

j 6=i Ai,j

As a corollary: Gershgorin disc

lower bound λ−
min(A) ≤ λmin(A).

Gershgorin Disc Alignment based Sampling
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Paradigm: Solve (1) by maximizing λ−
min(B)

Sampling a node i, shift Di by 1 (Di → D′
i)

With λ(B) = λ(SBS−1), scalers can
expand/contracts discs[7]

Using shift and S operators, align λ−
min(B)

beyond T (D′
i → D

′′

i)

Binary search largest T for the desired

sampling budget

Overview of our method

Similarity Path Graph (SPG)

Pre-Trained

Sampling (not fast): Sample SPG by maximizing λmin(B) where
B = diag(a) + µL and a the sampling vector
GDA based sampling (fast): Avoid eigenvalue decomposition by

maximizing λ−
min(B) instead based on GDAS [6]

Specialized GDA-based sampling (faster): We prove that, by

partitioning G into sub-graphs {Gq}Q
q=1, then minq λ−

min(Bq) is a lower
bound for λ−

min(B) which enables even faster sampling for SPG

Numerical & Qualitative Results

Conclusion

New class of key-frame selector

based on Graph Sampling

Scalable key-frame selector with

comparable results

Devise specialized GDAS[6] based

graph sampling for SPG
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In comparison to [8], ours has less re-
dundancy, better representation and
better sparsity

Table 1. Results on VSUMM benchmark

Algorithm P (%) R (%) F1 (%)

DT 35.51 26.71 29.43

STIMO 34.73 40.03 35.75

VSUMM 47.26 42.34 43.52

MSR 36.94 57.61 43.39

AGDS 37.57 64.60 45.52

SBOMP [2] 39.28 62.28 46.68

SBOMPn [2] 41.23 68.47 49.70

Ours 39.67 71.48 48.92

Precision, Recall

Pu = |A∩Uu|
|A| ,

Ru = |A∩Uu|
|Uu| ,

F1,u = 2PuRu

Pu+Ru

u users id

F1 = 2PR
P+R

Algorithm Complexity (O)
SBOMP[2] O(dN 2m + d2Nm3)
Ours O(ND2 log 1/ε)

N :Number of frames

d:feature vector dimension
m:Number of keyframes

D:Maximum recursion (D � N)

ε:Binary search precision
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