
PARTITIONED SUCCESSIVE-CANCELLATION LIST DECODING OF POLAR CODES

Seyyed Ali Hashemi⋆, Alexios Balatsoukas-Stimming†, Pascal Giard⋆,

Claude Thibeault⋄ and Warren J. Gross⋆

⋆McGill University, Montréal, Québec, Canada
†École polytechnique fédérale de Lausanne, Lausanne, Switzerland

⋄École de technologie supérieure, Montréal, Québec, Canada

ABSTRACT

Successive-cancellation list (SCL) decoding is an algorithm

that provides very good error-correction performance for po-

lar codes. However, its hardware implementation requires a

large amount of memory, mainly to store intermediate results.

In this paper, a partitioned SCL algorithm is proposed to re-

duce the large memory requirements of the conventional SCL

algorithm. The decoder tree is broken into partitions that are

decoded separately. We show that with careful selection of

list sizes and number of partitions, the proposed algorithm

can outperform conventional SCL while requiring less mem-

ory.

Index Terms— Partitioned List Decoder, Successive-

Cancellation List Decoder, Polar Codes, Hardware Imple-

mentation.

1. INTRODUCTION

Polar codes provably achieve the symmetric capacity of mem-

oryless channels and therefore have gained a lot of attention as

promising error-correcting codes [1]. Successive-cancellation

(SC) decoding was first proposed as a low-complexity decod-

ing algorithm for polar codes. It was shown that the error

probability of polar codes under SC decoding goes to zero as

the blocklength goes to infinity, provided that the rate of the

polar code is less than the capacity of the channel. From a

hardware implementation point of view, SC decoding can be

represented as a decoder tree having a fixed time and space

complexity and is thus very attractive [2]. However, the algo-

rithm is sub-optimal, especially for decoding moderate-length

polar codes.

To improve the error-correction performance of SC de-

coding, the SC list (SCL) decoding algorithm was proposed

in [3]. Unlike SC decoding, which estimates each bit based on

the estimation of previous bits, SCL keeps a constrained list of

the most likely candidates at each decoding step using the log-

likelihood (LL) of each candidate. SCL reduces the gap be-

tween SC and maximum likelihood (ML) decoding at the cost

of increased complexity. Furthermore, it was shown that con-

catenating polar codes with a cyclic redundancy check (CRC)

as an outer code improves the performance of SCL to the ex-

tent where polar codes decoded with CRC-aided SCL are able

to outperform low-density parity-check (LDPC) codes of the

same length and rate [3]. To reduce the hardware complexity

associated with LL-based SCL decoding, log-likelihood ra-

tio (LLR) values were used and the path metric calculations

adapted accordingly in [4]. Unfortunately, similarly to its LL-

based counterpart, LLR-based SCL decoding requires a large

memory to store the intermediate values, i.e. the total core

area is often largely dominated by memory [4].

In this paper, a partitioned SCL (PSCL) decoding algo-

rithm is proposed in order to reduce the memory requirements

associated with SCL decoding. More specifically, PSCL de-

coding performs SCL decoding on partitions of the decoder

tree and only one path candidate is transferred from one par-

tition to the next. As a result, memory can be shared between

the different partitions of the code, therefore, significantly

reducing the overall memory requirements. Without loss of

generality, we propose a CRC-aided scheme.

The paper is organized as follows: Section 2 offers a brief

overview on polar encoding and decoding. Section 3 de-

scribes the proposed PSCL algorithm and compares its error-

correction performance with that of conventional SCL de-

coding. In Section 4 hardware implementation results are

presented showing memory and total area savings of up to

41% and 42%, respectively, at similar error-correction perfor-

mance. Finally, conclusions are drawn in Section 5.

2. POLAR CODES

A polar code of length N = 2n which carries K information

bits, denoted by P(N,K), has rate R , K
N

and is constructed

by concatenating two polar codes of length N
2 . Let us con-

sider an input set uN−1
0 = {u0, u1, . . . , uN−1} and a coded

set xN−1
0 = {x0, x1, . . . , xN−1}. The recursive concatena-

tion process can be expressed as a modulo-2 matrix multipli-

cation as in

xN−1
0 = uN−1

0 G⊗n, (1)

where G⊗n is the n-th Kronecker product of the polarizing

matrix G =
[
1 0
1 1

]
.

0

0

0

u3

0

u5

u6

u7

x0

x1

x2

x3

x4

x5

x6

x7
︸︷︷︸ ︸︷︷︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸

level 0 1 2 3

Fig. 1: Polar encoding for P(8, 4).

Polar encoding consists of finding the K most reliable bit-

channels and transmitting the information bits through them.

The N − K least reliable bits are set to a predefined value

(usually 0) which is known by the decoder, and thus are called

frozen bits. An example of polar encoding for P(8, 4) is il-

lustrated in Fig. 1, where xN−1
0 is generated by the encoder

before being modulated and sent through the channel. The

noisy channel output yN−1
0 is input to the polar decoder.

SC decoding provides each bit estimate ûi based on

yN−1
0 , the previously estimated bits ûi−1

0 , and the location of

frozen bits F . The LLR-based formulation is

ûi =

{

0, if i ∈ F or log
P(yN−1

0
,û

i−1

0
|ûi=0)

P(yN−1

0
,û

i−1

0
|ûi=1)

≥ 0,

1, otherwise.
(2)

SC works on a decoder tree such as the one illustrated in

Fig. 2. There are two types of messages passed through the

different levels in a decoder tree: 1) the soft messages which

contain the LLR values α; 2) the hard bit estimates β. Each

node at level s of the decoder tree contains 2s bits and the

messages in Fig. 2 are calculated as

αl[i] =sgn(α[i])sgn(α[i + 2s−1])min(|α[i]|, |α[i + 2s−1]|),

αr[i] =α[i + 2s−1] + (1− 2βl[i])α[i], (3)

and

β[i] =

{

βl[i]⊕ βr[i], if i < 2s−1

βr[i+ 2s−1], otherwise,
(4)

where ⊕ denotes the bitwise XOR operation [2] and β[i] are

called partial sums.

To improve the error-correcting performance of SC de-

coding, for each non-frozen bit, SCL decoding creates two

tentative paths on the decoding tree corresponding to ûi = 0
and ûi = 1. In order to avoid an exponential growth in the

number of tentative paths, only the L best (i.e., most likely)

paths are kept. Specifically, in LLR-based SCL decoding [4],

the L best paths are determined by the following path metric

PMl
i =

{

PMl
i−1, if ûl

i =
1
2

(
1− sgn

(
αl
i

))
,

PMl
i−1 + |αl

i|, otherwise,
(5)

level
3

2

1

0

α
β

α l

β l

β
rα

r

Fig. 2: SC decoder tree for P(8, 4).

where l is the path index and αl
i is the LLR value associated

with the i-th bit at path l. A smaller path metric indicates a

more reliable path.

Unfortunately, SCL decoding requires a large amount of

memory to store the intermediate values. Let us assume that

the LLR and path metric values are quantized with Qα and

QPM bits, respectively. The total memory requirements for

the storage of the LLR values α, the path metrics PM, and the

partial sum values β in the SC and SCL algorithms are [2]

MSC = (2N − 1)Qα
︸ ︷︷ ︸

α (LLR values)

+ N − 1
︸ ︷︷ ︸

β (partial sums)

, (6)

and [4]

MSCL = (N + (N − 1)L)Qα
︸ ︷︷ ︸

α (LLR values)

+ LQPM
︸ ︷︷ ︸

path metrics

+(2N − 1)L
︸ ︷︷ ︸

β (partial sums)

,

(7)

respectively. We note that QPM grows at most as logN [4],

so the term LQPM is negligible in Eq. (7).

3. PARTITIONED SCL DECODING OF

POLAR CODES

The large memory requirements of the SCL algorithm trans-

late into a large area occupation in the actual hardware de-

coder implementation. In fact, the total area is often largely

dominated by memory, e.g. the memory area accounts for

45% of the total area in [4]. In order to reduce the required

memory and, therefore, the area of the decoder, we propose a

partitioned SCL (PSCL) decoding technique.

3.1. Proposed PSCL Decoding Algorithm

The conventional CRC-aided SCL decoding algorithm first

performs SCL decoding to obtain the L most likely codeword

candidates and, in the end, selects the (hopefully) correct es-

timate by choosing the candidate that matches the expected

CRC. If no codeword verifies the CRC, the candidate with

the best path metric is selected.

In PSCL decoding, on the other hand, the decoder tree

is broken into partitions (i.e., subtrees) and SCL decoding is

performed only on the partitions, while the standard SC rules

level
n

n− 1

αl

βl

β
r

α
r

CRC-aided

SCL

CRC-aided

SCL

Fig. 3: PSCL with two partitions.

level
n

n− 1

n− 2

α
β

α l

β l

β
rα

r

CRC-aided

SCL

CRC-aided

SCL

CRC-aided

SCL

CRC-aided

SCL

Fig. 4: PSCL with four partitions.

are applied to the remainder of the decoding tree. Each par-

tition outputs a single candidate codeword which is selected

with the help of a CRC and then sent to the next partition for

further decoding. The decoding process starts with the stan-

dard SC update rules given by (3) and (4). Therefore, the

decoder does not require memory to store L entire trees of

internal LLRs, but only L copies of the partitions on which

SCL decoding is performed.

Fig. 3 and Fig. 4 show the PSCL process when a code is

broken into two and four partitions, respectively. The memory

used in each CRC-aided SCL decoding block can be shared

with the next decoding block since only one candidate sur-

vives after decoding each partition. The total memory usage

in PSCL with P partitions and list size L can be calculated as

MPSCL =

(
P−1∑

k=0

N

2k
+

(
N

2P−1
− 1

)

L

)

Qα

︸ ︷︷ ︸

α (LLR values)

+ LQPM
︸ ︷︷ ︸

path metrics

+
P−2∑

k=1

N

2k
+

(
N

2P−2
− 1

)

L

︸ ︷︷ ︸

β (partial sums)

, (8)

where P ≥ 2 and P = 1 makes PSCL decoding equivalent

to conventional SCL decoding. Also note that when P = 2,
∑P−2

k=1
N
2k = 0.

It should be noted that the lower bound on the memory

usage for PSCL is the memory requirement of the SC algo-

rithm and the upper bound is the memory required by SCL

with list size L. Fig. 5 illustrates the PSCL memory usage

with different numbers of partitions and list sizes for a po-

lar code with N = 2048, Qα = 6 bits, and QPM = 8 bits.

20 21 22 23 24 25 26 27 28 29 210 211

0.5

1

1.5
·105

Number of Partitions

M
em

o
ry

B
it

s

PSCL2

PSCL4

PSCL8

SC Bound

SCL2 Bound

SCL4 Bound

SCL8 Bound

Fig. 5: Memory requirements for polar codes of length N =
2048. PSCLL (SCLL) denotes the PSCL (SCL) decoding

algorithm with list size L.

As it can be seen in the figure, the amount of memory de-

cays exponentially towards the SC bound as the number of

partitions increases. In other words, a small increase in the

number of partitions results in significant savings, e.g. using

four partitions in PSCL4 is expected to require less memory

than SCL2.

3.2. Error-Correction Performance

Fig. 6 shows the frame error rate (FER) and bit error rate

(BER) performance of SCL and PSCL. The error-correction

performance of the plain SC algorithm is also included as a

reference. SCLL-CRCx denotes the SCL algorithm with list

size L and CRC length x and PSCL(P,L)-CRCx represents

the PSCL algorithm with P partitions, list size L, and a CRC

of length x.

The performance results are provided for a polar code of

length N = 2048 and rate R = 1
2 , while a CRC of length

32 is used for the conventional SCL decoding algorithm. To

keep the code rate unchanged and to have a fair comparison,

PSCL(2, L) uses a CRC of length 16, i.e. each of its two

partitions uses a CRC16. Similarly, for PSCL(4, L) each of

the four partitions uses a CRC8. The CRC polynomials were

taken from [5, 6].

Fig. 6 shows that PSCL(2, 2)-CRC16 has identical FER

and BER performance compared to SCL2-CRC32 and there

is only a slight deterioration in performance when the code

is broken into four partitions, as shown by the PSCL(4, 2)-
CRC8 curve. However, in Fig. 6, it can also be seen that

PSCL(4, 4)-CRC8 has superior error-correction performance

compared to that of SCL2-CRC32. Furthermore, PSCL(4, 4)
actually requires slightly less memory than SCL2, as shown in

Fig. 5. Thus, PSCL achieves better performance and reduces

memory usage at the same time.

1 2 3

10−6

10−5

10−4

10−3

10−2

10−1

100

Eb/N0 [dB]

F
E

R

1 2 3

10−7

10−6

10−5

10−4

10−3

10−2

10−1

Eb/N0 [dB]

B
E

R

SC PSCL(2, 2)-CRC16

SCL2-CRC32 PSCL(4, 2)-CRC8

SCL4-CRC32 PSCL(4, 4)-CRC8

Fig. 6: Frame error rate (FER) and bit error rate (BER) per-

formance comparison between CRC-aided SCL and PSCL

decoding of P(2048, 1024). The code is optimized for

Eb/N0 = 2 dB.

4. HARDWARE IMPLEMENTATION RESULTS

Table 1 presents indicative synthesis results to compare SC,

the conventional CRC-aided SCL algorithm with L ∈ {2, 4},

and the proposed PSCL algorithm for L ∈ {2, 4} and P ∈
{2, 4}, for a polar code of blocklength N = 2048. For the

CRC-aided SCL algorithm, the hardware architecture of [4] is

used while an appropriately modified version of [4] was used

for the PSCL algorithm. All synthesis results are for a TSMC

90 nm CMOS library (1 V, 25◦C) with a target frequency of

500 MHz. All decoders have an equal latency of 5248 clock

cycles (10.5 µs) and throughput of 164 Mbps.

From Table 1, we observe that the PSCL(2, 2) and

PSCL(4, 2) decoders require 23% and 41% less memory

area than the SCL2 decoder, respectively. The PSCL(4, 4)
decoder implementation is shown to require 23% less mem-

ory area than the SCL2 decoder while offering a better coding

gain by approximately 0.25 dB at a BER of 10−5. Regardless

of the implementation, the memory area of the list decoders

amounts to 40%–45% of the total area. The memory savings

observed for the PSCL implementations thus translate into

very significant reductions in the total area, making them very

attractive compared to the conventional SCL decoders.

5. CONCLUSION

In this paper, we have proposed a novel partitioned list de-

coding algorithm for polar codes. In this algorithm, the code

is broken into partitions and each partition is decoded with

a CRC-aided successive-cancellation list decoder. Since the

memory is shared between different partitions in the code,

Table 1: Synthesis area results for the SC, CRC-aided SCL,

and PSCL decoding algorithms.

Algorithm Total (mm2) Memory (mm2)

SC 0.723 0.413
SCL2-CRC32 1.563 0.702
SCL4-CRC32 3.075 1.214
PSCL(2, 2)-CRC16 1.189 0.540
PSCL(4, 2)-CRC8 0.909 0.415
PSCL(4, 4)-CRC8 1.356 0.543

the memory requirements of a hardware implementation of

partitioned list decoder is significantly smaller than that of

a conventional list decoder without any error-correction per-

formance degradation. Implementation results show that at

equivalent error-correction performance, the proposed algo-

rithm leads to memory and total area savings of 41% and

42%, respectively, when compared to a similar list decoder

implementation. Moreover, the proposed algorithm enables

a coding gain of approximately 0.25 dB at a bit error rate of

10−5 while occupying 13% less total area than the conven-

tional CRC-aided successive-cancellation list decoder.

ACKNOWLEDGEMENT

The authors would like to thank Gabi Sarkis and Carlo Condo

of McGill University for helpful discussions.

6. REFERENCES

[1] E. Arıkan, “Channel polarization: A method for con-

structing capacity-achieving codes for symmetric binary-

input memoryless channels,” IEEE Trans. Inf. Theory,

vol. 55, no. 7, pp. 3051–3073, July 2009.

[2] C. Leroux, A.J. Raymond, G. Sarkis, and W.J. Gross,

“A semi-parallel successive-cancellation decoder for po-

lar codes,” IEEE Trans. Signal Process., vol. 61, no. 2,

pp. 289–299, Jan 2013.

[3] I. Tal and A. Vardy, “List decoding of polar codes,” IEEE

Trans. Inf. Theory, vol. 61, no. 5, pp. 2213–2226, May

2015.

[4] A. Balatsoukas-Stimming, M. Bastani Parizi, and

A. Burg, “LLR-based successive cancellation list decod-

ing of polar codes,” IEEE Trans. Signal Process., vol. 63,

no. 19, pp. 5165–5179, Oct 2015.

[5] P. Koopman and T. Chakravarty, “Cyclic redundancy

code (CRC) polynomial selection for embedded net-

works,” in IEEE Int. Conf. on Dependable Syst. and Netw.

(DSN), 2004, pp. 145–154.

[6] P. Koopman, “32-bit cyclic redundancy codes for internet

applications,” in IEEE Int. Conf. on Dependable Syst. and

Netw. (DSN), 2002, pp. 459–468.

