# Infant Crying Detection in Real-World Environments

Xuewen Yao<sup>1</sup>, Megan Micheletti<sup>2</sup>, Mckensey Johnson<sup>2</sup>, Edison Thomaz<sup>1</sup>, Kaya de Barbaro<sup>2</sup> <sup>1</sup>Department of Electrical and Computer Engineering, University of Texas at Austin, USA <sup>2</sup>Department of Psychology, University of Texas at Austin, USA

# Introduction

- Infant crying is a critical signal for communication and a known parental stressor.
- Many researchers have tried to detect crying, and it appears the models do well [1].
  - Previous crying models either were developed and evaluated using data in controlled settings or trained and evaluated on short, preparsed segments containing non-overlapping individual sound.
- Detection and classification in real-world settings is much harder than clean-lab conditions, such as in cough [2] and laughter [3] detections

#### Datasets

| • | We collected 780 hours of raw audio data using LENA in real-world home environments. |
|---|--------------------------------------------------------------------------------------|
| • | Real world: Filtered Dataset (RW-Filt)                                               |
|   | <ul> <li>Filtered using algorithms from LENA<br/>software</li> </ul>                 |
| • | Real world: Unfiltered 24h Dataset (RW-24h)                                          |
|   | <ul> <li>Unfiltered, randomly sampled audio data fo</li> </ul>                       |
|   | testing only                                                                         |
| • | In-lab (IL-CRIED)                                                                    |
|   | <ul> <li>CRIED database (microphones over awake)</li> </ul>                          |
|   | infants in a cot in a quiet room)                                                    |
|   | <ul> <li>5587 individual vocalisations of 20 healthy infants</li> </ul>              |
|   | <ul> <li>Vocalizations: infant neutral/positive,</li> </ul>                          |
|   | fussing, crying, and overlapping adult vocalizations                                 |
| • | In summary, we have three audio datasets:                                            |
|   |                                                                                      |

|          | Table 1. Crying Dataset Statistics |           |    |             |  |  |  |
|----------|------------------------------------|-----------|----|-------------|--|--|--|
| Dataset  | Cry Hrs                            | Total Hrs | Ν  | Ages (month |  |  |  |
| RW-Filt  | 7.9                                | 66        | 24 | 1.53 - 10.8 |  |  |  |
| RW-24h   | 14.7                               | 408       | 17 | 0.78 - 7.03 |  |  |  |
| IL-CRIED | 1.26                               | 14        | 20 | 1 - 4       |  |  |  |

# Contribution

- We collected and annotated a real-world infant crying dataset
  - https://homebank.talkbank.org/access/Passwor d/deBarbaroCry.html
- We developed a robust crying detection model in real-world
  - F1 score: 0.613 (Precision: 0.672, Recall: 0.552)
  - https://github.com/AgnesMayYao/Infant-Crying-Detection
- We concluded that In-lab crying dataset does not generalize to real-world situations
  - Trained on in-lab, tested on In-lab F1 score: 0.656
  - Trained on in-lab, tested on real-world F1 score: 0.236

| using         |                                                                                                                                                                                                                                                                  |
|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4h)<br>ta for | <ul> <li>Annotation <ul> <li>At level of crying episodes according to the best practice in behavioral science</li> <li>Include both fussing and crying vocalization</li> <li>Inter-rater reliability kappa score: 0.85 (strong agreement)</li> </ul> </li> </ul> |
| vake          | <ul> <li>Preprocessing</li> </ul>                                                                                                                                                                                                                                |
| lthy          | <ul> <li>Training</li> <li>Windowing: 5 second windows (with 4 second overlap)</li> <li>Augmentation using time masking deformation technique</li> </ul>                                                                                                         |
|               | <ul> <li>Testing         <ul> <li>Testing</li> <li>Removed all audio segments silent abored a 350 Hz threshold</li> </ul> </li> </ul>                                                                                                                            |
| onths)        | <ul> <li>Windowing: 5 second windows (with 4 second overlap)</li> </ul>                                                                                                                                                                                          |

# **Crying Detection Models and Results**

Pre-processing

Raw Audio

- SVM with acoustic features (AF)
  - 34 acoustic features
  - SVM classifier with RBF kernel
- End-to-end CNN model (CNN)
- Modified AlexNet with mel-scaled spectrograms as input
- SVM with deep spectrum and acoustic features (DSF + AF)
  - Combination of AF and CNN
  - Last hidden layer of CNN (size 1000) used as deep spectrum features

| Train on RW-Filt  | F1                                | Precision          | Recall             |  |
|-------------------|-----------------------------------|--------------------|--------------------|--|
| AF                | $0.515(\pm 0.185)$                | $0.42(\pm 0.225)$  | $0.847(\pm 0.140)$ |  |
| CNN               | $0.620(\pm 0.182)$                | $0.505(\pm 0.206)$ | 0.873(±0.110)      |  |
| DSF + AF          | 0.615(±0.170)                     | 0.521(±0.191)      | $0.820(\pm 0.147)$ |  |
| VGGish            | $0.574(\pm 0.204)$                | $0.445(\pm 0.216)$ | $0.936(\pm 0.062)$ |  |
| Train on IL-CRIED | <b>Results on IL-CRIED (LOPO)</b> |                    |                    |  |
| DSF + AF          | 0.656(±0.191)                     | 0.578(±0.255)      | 0.808(±0.128)      |  |

- DSF + AF is the best performing model for real-world datasets.
- DSF + AF reaches F1 score 0.613 when trained and tested on real-world datasets.
- End-to-end CNN training contributed most substantially to the DSF + AF model's performance.

#### Discussion

- Real-world vs. In-lab training data • Datasets collected in
  - controlled environments do not represent the full complexity of real-world environments
  - Models trained on in-lab data are of limited use in the context of the real-world crying detection task
- We found DSF + AF performed substantially better than LENA's cry classifier in assessment scenarios important to developmental researchers [5].

## Acknowledgements

We thank Katrin D. Bartl-Pokorny, Christa Einspieler, Peter B. Marschik, Florian B. Pokorny, and Dajie Zhang of Medical University of Graz, Austria for providing us with CRIED database.

### References

[1]. C. Ji, T. B. Mudiyanselage, Y. Gao, and Y. Pan, "A review of infant cry analysis and classification," EURASIP Journal on Audio, Speech, and Music Processing, no. 8, 2021. [2]. D. Liaqat, S. Liaqat, J. L. Chen, T. Sedaghat, M. Gabel, F. Rudzicz, and E. de Lara, "Coughwatch: Real-world cough detection using smartwatches," in ICASSP 2021, 2021, pp.8333-8337. [3]. J. Gillick, W. Deng, K. Ryokai, and D. Bamman, "Robust Laughter Detection in Noisy Environments," in Proc. Interspeech 2021, 2021, pp. 2481–2485. [4]. P. Marschik, F. Pokorny, R. Peharz, D. Zhang, J. O'Muircheartaigh, H. Roeyers, S. B "olte, A. Spittle, B. Urlesberger, B. Schuller, L. Poustka, S. Ozonoff, F. Pernkopf, T. Pock, K. Tammimies, C. Enzinger, M. Krieber, I. Tomantschger, K. Bartl-Pokorny, J. Sigafoos, L. Roche, G. Esposito, M. Gugatschka, K. Nielsen-Saines, C. Einspieler, W. Kaufmann, and The BEE-PRI Study Group, "A novel way to measure and predict development: A heuristic approach to facilitate the early detection of neurodevelopmental disorders," Current Neurology and Neuroscience Reports, vol. 17, no. 5, pp. 43, Apr 2017. [5]. M. Micheletti, X. Yao, M. Johnson, and K. de Barbaro, "Validating a Model to Detect Infant Crying from Naturalistic Audio," Behavior Research Methods (In Review).





 $0.613(\pm 0.184)$   $0.672(\pm 0.219)$   $0.552(\pm 0.178)$  $0.543(\pm 0.204)$   $0.489(\pm 0.228)$   $0.652(\pm 0.182)$ **Results on RW-24h** 

 $0.236(\pm 0.122)$   $0.143(\pm 0.084)$   $0.851(\pm 0.162)$