IEEE ICASSP 2022

Infant Crying Detection in Real-World Environments

Xuewen Yao¹, Megan Micheletti², Mckensey Johnson², Edison Thomaz¹, Kaya de Barbaro² ¹Department of Electrical and Computer Engineering, University of Texas at Austin, USA ²Department of Psychology, University of Texas at Austin, USA

Introduction

- Infant crying is a critical signal for communication and a known parental stressor.
- Many researchers have tried to detect crying, and it appears their models do well [1].
- However, previous models are typically developed and evaluated with "clean-lab" data
 - Controlled settings
 - Short, preparsed segments containing non-overlapping individual cry sounds.

First Author	Dataset	Features	Classifiers	Best Performance
Chang (2019)	Self-recorded (Crying with TV, Speech, etc.)	Spectrogram	CNN	99.83%
Manikanta (2019)	Recorded in homes (Crying with AC, Fan, etc.)	MFCC	1D-CNN FFNN SVM	86%
Dewi (2019)	Self-recorded samples Cry and Not Cry	LFCC	KNN	90%
Gu (2018)	Self-recorded (Crying with laughter, barking, etc.)	LPC	Dynamic time warping algorithm	97.1%
Ferretti (2018)	Real Dataset: recorded in the NICU of a hospital. Synthetic DB: Crying with speech, "beep" sounds, etc.)	Log-Mel Coefficients	DNN	Real dataset 86.58% Synthetic DB 92.92%
Feier (2017)	TUT Rare Sound Events 2017 (Crying with "glass breaking" "gunshot" ato)	log-amplitude mel- spectrogram	CRNN	85% for baby crying detection

• Thus, their results may not generalize to real-world contexts in which they are most needed

Introduction

- Detection and classification in real-world settings is much harder than clean-lab conditions
 - E.g. real-world cough [2] and laughter [3] detections

• Training on Switchboard (Precise segmentations, but out-of-domain)

Method	Results on Switchboard Test Data (F1)	Results on New AudioSet Test Data (F1)
Baseline (Featurized MLP)	0.688	0.359
Resnet	0.747	0.573
Resnet + Augmentation	0.752	0.608

[2]. D. Liaqat, S. Liaqat, J. L. Chen, T. Sedaghat, M. Gabel, F. Rudzicz, and E. de Lara, "Coughwatch: Real-world cough detection using smartwatches," in *ICASSP 2021*, 2021, pp.8333–8337.
 [3]. J. Gillick, W. Deng, K. Ryokai, and D. Bamman, "Robust Laughter Detection in Noisy Environments," in *Proc. Interspeech 2021*, 2021, pp. 2481–2485.

Contribution

- We collected and annotated a real-world infant crying dataset
 - <u>https://homebank.talkbank.org/access/Password/deBarbaroCry.html</u>
- We developed a robust crying detection model in real-world
 - F1 score: 0.613 (Precision: 0.672, Recall: 0.552)
 - <u>https://github.com/AgnesMayYao/Infant-Crying-Detection</u>
- We concluded that in-lab crying dataset does not generalize to real-world situations
 - trained on in-lab, tested on In-lab F1 score: 0.656
 - trained on in-lab, tested on real-world F1 score: 0.236

Two novel audio datasets

- We collected 780 hours of raw audio data using LENA in real-world home environments.
- Real world: Filtered Dataset (RW-Filt)
 - Filtered using algorithms from LENA software
- Real world: Unfiltered 24h Dataset (RW-24h)
 - Unfiltered, randomly sampled audio data for testing only
- Annotation
 - At level of crying episodes according to best practices
 - Include both fussing and crying vocalizations
 - Inter-rater reliability kappa score: 0.85 (strong agreement)

One existing audio dataset

- In-lab (IL-CRIED)
 - CRIED database published by Marschik et al [4]
 - Microphones over infants in a cot in a quiet room
 - 5587 individual vocalisations from 140 recordings of 20 healthy infants
 - Vocalizations: infant neutral/positive, fussing, crying, and overlapping adult vocalizations
 - Re-annotated to match our real-world datasets

In summary, we have three audio datasets

Dataset	Cry Hrs	Total Hrs	Ν	Ages (months)	
RW-Filt	7.9	66	24	1.53 - 10.8	
RW-24h	14.7	408	17	0.78 - 7.03	
IL-CRIED	1.26	14	20	1 - 4	

Table 1. Crying Dataset Statistics

[4]. P. Marschik, F. Pokorny, R. Peharz, D. Zhang, J. O'Muircheartaigh, H. Roeyers, S. B'olte, A. Spittle, B. Urlesberger, B. Schuller, L. Poustka, S. Ozonoff, F. Pernkopf, T. Pock, K. Tammimies, C. Enzinger, M. Krieber, I. Tomantschger, K. Bartl-Pokorny, J. Sigafoos, L. Roche, G. Esposito, M. Gugatschka, K. Nielsen-Saines, C. Einspieler, W. Kaufmann, and The BEE-PRI Study Group, "A novel way to measure and predict development: A heuristic approach to facilitate the early detection of neurodevelopmental disorders," *Current Neurology and Neuroscience Reports*, vol. 17, no. 5, pp. 43, Apr 2017.

Model development

- Use real-world RW-Filt data to train a set of three models*
 - Test the performance on RW-Filt and RW-24h (raw, unfiltered)
 - Determine the best performing model
- Use lab-clean IL-CRIED data to train the best performing model
 - Test and compare the performance on lab-clean IL-CRIED and real-world RW-24h

Preprocessing

- Training
 - 5 second windows (with 4-second overlap)
 - Augmentation using time masking deformation technique
- Testing
 - Removed all audio segments silent above a 350 Hz threshold
 - 5 second windows (with 4-second overlap)

*technically four models -see paper for details

Crying detection models

- SVM with acoustic features (AF)
 - 34 acoustic features
 - SVM classifier with RBF kernel
- End-to-end CNN model (CNN)
 - Modified AlexNet with mel-scaled spectrograms as input
- SVM with deep spectrum and acoustic features (DSF + AF)
 - Combination of AF and CNN
 - Last hidden layer of CNN (size 1000) used as deep spectrum features

Crying detection models

- SVM with acoustic features (AF)
 - 34 acoustic features
 - SVM classifier with RBF kernel
- End-to-end CNN model (CNN)
 - Modified AlexNet with mel-scaled spectrograms as input
- SVM with deep spectrum and acoustic features (DSF + AF)
 - Combination of AF and CNN
 - Last hidden layer of CNN (size 1000) used as deep spectrum features

Crying detection models

- SVM with acoustic features (AF)
 - 34 acoustic features
 - SVM classifier with RBF kernel
- End-to-end CNN model (CNN)
 - Modified AlexNet with mel-scaled spectrograms as input
- SVM with deep spectrum and acoustic features (DSF + AF)
 - Combination of AF and CNN
 - Last hidden layer of CNN (size 1000) used as deep spectrum features

Results

	Results on RW-Filt (LOPO)			Results on RW-24h			
Train on RW-Filt	F1	Precision	Recall	F1	Precision	Recall	
AF	0.515(±0.185)	$0.42(\pm 0.225)$	$0.847(\pm 0.140)$	$0.502(\pm 0.204)$	0.481(±0.239)	0.586(±0.191)	
CNN	0.620(±0.182)	0.505(±0.206)	0.873(±0.110)	0.589(±0.194)	0.642(±0.217)	0.580(±0.178)	
DSF + AF	0.615(±0.170)	0.521(±0.191)	0.820(±0.147)	0.613(±0.184)	0.672(±0.219)	0.552(±0.178)	
VGGish	$0.574(\pm 0.204)$	$0.445(\pm 0.216)$	$0.936(\pm 0.062)$	0.543(±0.204)	0.489(±0.228)	0.652(±0.182)	
Train on IL-CRIED	Results on IL-CRIED (LOPO)			Results on RW-24h			
DSF + AF	0.656(±0.191)	$0.578(\pm 0.255)$	0.808(±0.128)	0.236(±0.122)	0.143(±0.084)	0.851(±0.162)	

Table 2. Infant cry detection performance on both real-world and in-lab dataset, with second-by-second accuracy averaged across participants.

- DSF + AF is the best performing model for real-world datasets.
- DSF + AF reaches F1 score 0.613 when trained and tested on real-world datasets.
- End-to-end CNN training contributed most substantially to DSF + AF model's performance.

Discussion: real-world vs. in-lab datasets

- Datasets collected in controlled environments do not represent the full complexity of real-world environments
- Models trained on in-lab data are of limited use in the context of the real-world crying detection task
- In other work, we tested DSF + AF in assessment scenarios important to developmental researchers against LENA's cry classifier
 - Our model has substantially higher accuracy metrics (recall, F1, kappa)
 - And stronger correlations with human annotations at all timescales tested (24 hours, 1 hour, and 5 minutes) relative to LENA [5].