PSEUDO STRONG LABELS FOR LARGE SCALE WEAKLY SUPERVISED AUDIO TAGGING Heinrich Dinkel, Zhiyong Yan, Yongqing Wang, Junbo Zhang, Yujun Wang Xiaomi Corporation

Highlights

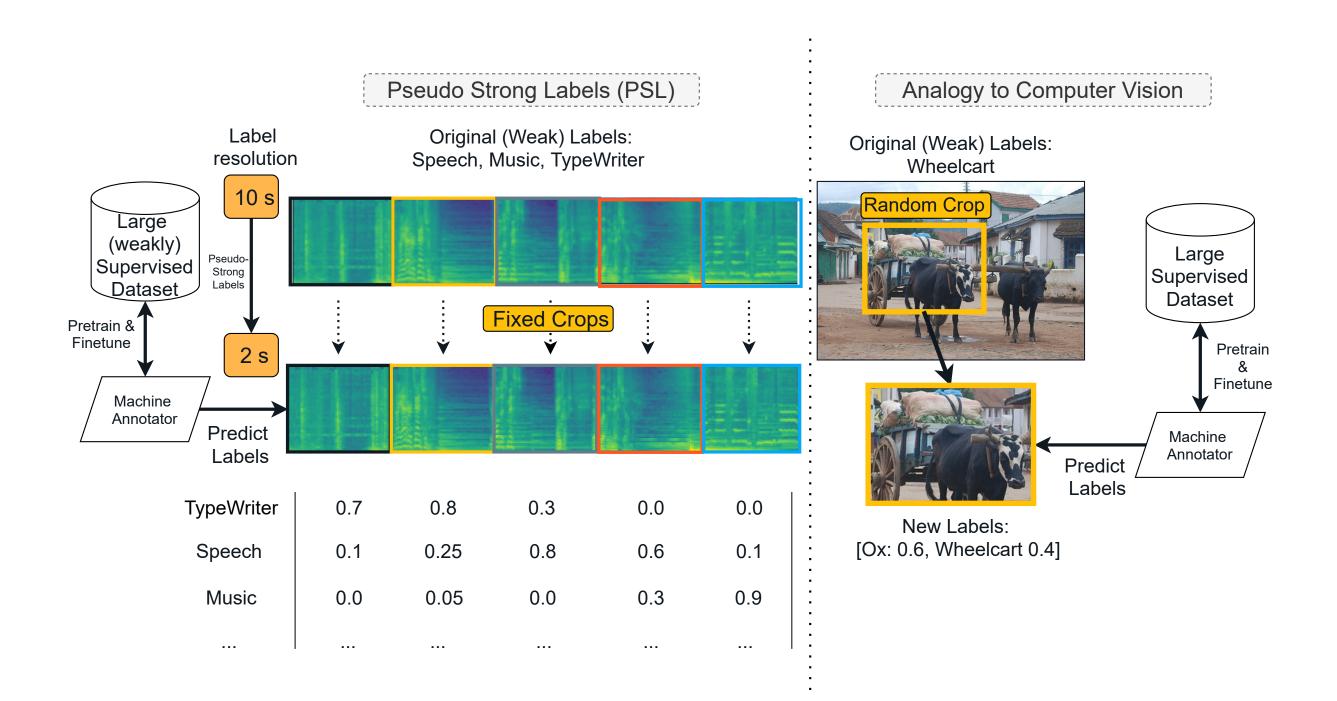
- Simple MobileNetV2 approach: Fast training and inference.
- State-of-the-art performance on the 60h long Audioset balanced subset.
- Achieves **35.95** mAP on Audioset without Augmentation.
- Obtained **87%** of the performance using **1%** of the data.

Problem statement

- Audioset contains 5200 h hours of training data, with 527 ambiguous labels.
- Most labels in Audioset are **missing** i.e., "Liquid" is present, but "Water" is not.
- 10 s of audio contains too many labels.

Proposed approach: Pseudo Strong Labels (PSL)

- 1. First train a machine annotator (MA).
- 2. Predict **soft** targets on a finer scale (5s, 2s) using MA.
- 3. Train a model on these new soft labels.



Dataset and Training

The largest Audio tagging dataset, Audioset is used. Three training datasets and one evaluation.

Dataset	Purpose	# Clips	Duration (
Balanced		21,155	
Aud-300h	Train	109,295	30
Full		1,904,746	524
Eval	Evaluation	18,229	

Training objective, between the (soft) label $\mathbf{y} \in [0, 1]^C$ and the model (\mathcal{F}) prediction $\hat{\mathbf{y}} \in [0, 1]^C$, is the binary cross entropy:

> $\mathcal{L}_{\mathsf{BCE}}(\mathbf{x}, \mathbf{y}) = \mathbf{y} \log \hat{\mathbf{y}} + (\mathbf{1} - \mathbf{y}) \log(\mathbf{1} - \hat{\mathbf{y}}),$ $\hat{\mathbf{y}} = \mathcal{F}(\mathbf{x}),$

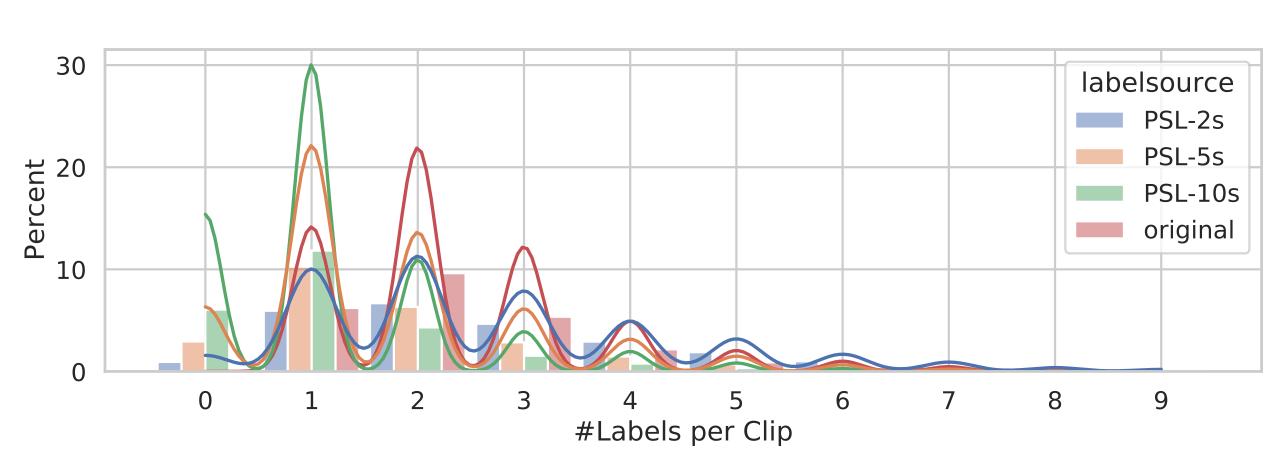
Main results

Results for models trained on the balanced subset of

Method	Label	mAP	ď
Baseline (Weak)	\mathbf{y}_{weak}^{10}	17.69	1.994
PSL-10s (Proposed)	$\hat{\mathbf{y}}_{PSL}^{10}$	31.13	2.454
PSL-5s (Proposed)	$\hat{\mathbf{y}}_{\text{PSL}}^{5}$	34.11	2.549
PSL-2s (Proposed)	$\hat{\mathbf{y}}_{PSL}^2$	35.48	2.588
CNN14 [Kong2020d]		27.80	1.850
EfficientNet-B0 [gong2021psla]		33.50	-
EfficientNet-B2 [gong2021psla]	\mathbf{y}_{weak}^{10}	34.06	-
ResNet-50 [gong2021psla]	mount	31.80	-
AST [gong21b_interspeech]		34.70	-
	1	,	

PSL Label count distribution

- The naïve PSL-10s mainly predicts single labels (1).
- 18% of the naïve PSL-10s does not predict a single label.
- PSL-5s/2s perform uniformly better than 10s, due to finer time resolution.
- PSL-2s outperforms the **original labels for > 4 labels**.
- PSL is capable of predicting missing labels.



Transfer Learning

- (h)
- 58
- 800
- 244
- 50

of Audioset	

Transferring weights to 3 different Audiotagging datasets using the MA and our proposed PSL-2s.

Dataset	Metric	MA	PSL-2s	Imp.
FSD50k	mAP	44.41	54.23	+9.82
FSD2018	mAP@3	87.31	89.21	+1.90
FSD2019-Curated	<i>lwl</i> wrap	68.84	71.86	+3.02
FSD2019-Noisy	<i>lwl</i> wrap	53.57	54.49	+0.92

Conclusion

- PSL mitigates missing labels for temporally weakly-supervised methods.
- A time-window of 2s seems to be a reasonable choice.
- Transfer learning experiments show that the improvement ir label-quality also transfers to other tasks.

Reevaluation of our results on the evaluation set with median post-processing.

post processing.					
Model	#Param (M)	PSDS-1	PSDS-2	Score	Single?
1st	14.3	45.2	74.6	1.40	N
2nd	20.2	44.2	67.4	1.32	Y
3rd	79.2	33.9	71.5	1.29	N
3rd	50.0	41.9	68.6	1.29	N
4th	119.8	41.6	63.7	1.24	N
S 3	3.4	38.2	65.4	1.20	Y
S2	2.7	37.9	64.3	1.19	Y
5th	8.5	41.3	58.6	1.19	Y
S1	2.0	36.1	64.3	1.16	Y
6th	6.7	37.0	62.6	1.16	Y

Code Available

github.com/ RicherMans/PSL

