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Highlights

• Simple MobileNetV2 approach: Fast training and inference.

• State-of-the-art performance on the 60h long Audioset balanced
subset.

• Achieves 35.95 mAP on Audioset without Augmentation.

• Obtained 87% of the performance using 1% of the data.

Problem statement

• Audioset contains 5200 h hours of training data, with 527 ambigu-
ous labels.

• Most labels in Audioset are missing i.e., “Liquid” is present, but “Wa-
ter” is not.

• 10 s of audio contains too many labels.

Proposed approach: Pseudo Strong
Labels (PSL)

1. First train a machine annotator (MA).

2. Predict soft targets on a finer scale (5s, 2s) using MA.

3. Train a model on these new soft labels.
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Dataset and Training

The largest Audio tagging dataset, Audioset is used. Three training datasets
and one evaluation.

Dataset Purpose # Clips Duration (h)

Balanced
Train

21,155 58
Aud-300h 109,295 300
Full 1,904,746 5244
Eval Evaluation 18,229 50

Training objective, between the (soft) label y ∈ [0, 1]𝐶 and the model (ℱ )
prediction ŷ ∈ [0, 1]𝐶, is the binary cross entropy:

ℒBCE(x, y) = y log ŷ + (1 − y) log(1 − ŷ),
ŷ = ℱ (x),

Main results

Results for models trained on the balanced subset of Audioset

Method Label mAP 𝑑′

Baseline (Weak) y10
weak 17.69 1.994

PSL-10s (Proposed) ŷ10
PSL 31.13 2.454

PSL-5s (Proposed) ŷ5
PSL 34.11 2.549

PSL-2s (Proposed) ŷ2
PSL 35.48 2.588

CNN14 [Kong2020d]

y10
weak

27.80 1.850
EfficientNet-B0 [gong2021psla] 33.50 -
EfficientNet-B2 [gong2021psla] 34.06 -
ResNet-50 [gong2021psla] 31.80 -
AST [gong21b_interspeech] 34.70 -

PSL Label count distribution

• The naïve PSL-10s mainly predicts single labels (1).

• 18% of the naïve PSL-10s does not predict a single label.

• PSL-5s/2s perform uniformly better than 10s, due to finer time resolution.

• PSL-2s outperforms the original labels for > 4 labels.

• PSL is capable of predicting missing labels.
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Transfer Learning

Transferring weights to 3 different Audiotagging datasets using the
MA and our proposed PSL-2s.

Dataset Metric MA PSL-2s Imp.

FSD50k mAP 44.41 54.23 +9.82
FSD2018 mAP@3 87.31 89.21 +1.90
FSD2019-Curated lwlwrap 68.84 71.86 +3.02
FSD2019-Noisy lwlwrap 53.57 54.49 +0.92

Conclusion

• PSL mitigates missing labels for temporally weakly-supervised
methods.

• A time-window of 2s seems to be a reasonable choice.

• Transfer learning experiments show that the improvement in
label-quality also transfers to other tasks.

Reevaluation of our results on the evaluation set with median
post-processing.

Model #Param (M) PSDS-1 PSDS-2 Score Single?

1st 14.3 45.2 74.6 1.40 N
2nd 20.2 44.2 67.4 1.32 Y
3rd 79.2 33.9 71.5 1.29 N
3rd 50.0 41.9 68.6 1.29 N
4th 119.8 41.6 63.7 1.24 N
S3 3.4 38.2 65.4 1.20 Y
S2 2.7 37.9 64.3 1.19 Y
5th 8.5 41.3 58.6 1.19 Y
S1 2.0 36.1 64.3 1.16 Y
6th 6.7 37.0 62.6 1.16 Y

Code Available

github.com/
RicherMans/PSL


