

Multiplication-Avoiding Variant of Power Iteration with Applications Hongyi Pan, Diaa Badawi, Runxuan Miao, Erdem Koyuncu, Ahmet Enis Cetin

Electrical and Computer Engineering, University of Illinois Chicago, Chicago, USA

Multiplication-Avoiding Vector Product

Let x and y are two real numbers, x and y are two vectors: Min-1 operation:

 $> x \odot y = \operatorname{sign}(x \cdot y) \min(|x|, |y|)$ $\mathbf{x}^T \odot \mathbf{y} = \sum_i \operatorname{sign}(x_i \cdot y_i) \min(|x_i|, |y_i|)$

 \blacktriangleright Min-2 operation:

 $\succ x \odot_m y = \begin{cases} \min(|x|, |y|), & \text{if sign}(x) = \text{sign}(x) \\ 0, & \text{otherwise} \end{cases}$ $\succ \mathbf{x}^T \odot_{\mathrm{m}} \mathbf{y} = \sum_i \mathbf{1}(\operatorname{sign}(x_i) = \operatorname{sign}(y_i))\min(|x_i|)$

Mercer-Type kernels

 $\succ \langle \phi(\mathbf{x}), \phi(\mathbf{y}) \rangle = \sum_{i} \operatorname{sign}(x_i \cdot y_i) \min(|x_i|, |y_i|)$ $\succ \langle \phi_m(\mathbf{x}), \phi_m(\mathbf{y}) \rangle = \sum_i \mathbf{1}(\operatorname{sign}(x_i)) = \operatorname{sign}(y_i)$

 $\succ \text{ They hold } \ell_1 \text{-norm property: } \mathbf{x}^T \odot \mathbf{x} = \mathbf{x}^T \odot_{\mathbf{m}} \mathbf{x} = ||\mathbf{x}||$ They are multiplication-free because the only "multiplication sign operation, which can be implemented using bit ope

$$\text{Matrix form: Let } \mathbf{X} = \begin{bmatrix} \mathbf{X}_1 & \cdots & \mathbf{X}_m \end{bmatrix} \text{ and } \mathbf{Y} = \begin{bmatrix} \mathbf{y}_1 & \cdots & \mathbf{x}_m^T \bigoplus \mathbf{y}_p \\ \vdots & \ddots & \vdots \\ \mathbf{x}_m^T \bigoplus \mathbf{y}_1 & \cdots & \mathbf{x}_m^T \bigoplus \mathbf{y}_p \end{bmatrix}, \text{ where } \mathbf{x}_m^T \bigoplus \mathbf{y}_p$$

Min-1 and Min-2 Covariance matrices: ► $\mathbf{A} = \frac{1}{N-1} \mathbf{X} \bigoplus \mathbf{X}^T$, where $\bigoplus \in \{\bigcirc, \bigcirc_m\}$.

Multiplication-Avoiding Power Iteration

- Regular Power Iteration (RPI): $\succ \mathbf{w}_{t+1} = \frac{\mathbf{A}\mathbf{w}_t}{||\mathbf{A}\mathbf{w}_t||}$ Multiplication-Avoiding Power Iteration (MAPI): $▶ \mathbf{w}_{t+1} = \frac{\mathbf{A} \oplus \mathbf{w}_t}{||\mathbf{A} \oplus \mathbf{w}_t||_1}, \text{ where } \oplus \in \{\bigcirc, \bigcirc_m\}.$ A: a diagonalizable matrix, for example, a covariance matrix \succ \mathbf{w}_t : the result vector at t-th power iteration, initialized rai \blacktriangleright RPI converges to the dominant eigenvector. MAPI converges to a "pseudo-eigenvector" in our simulati \blacktriangleright In MAPI, we do ℓ_1 -normalization because the two MAVPs
- Property. We can normalize the result vector by its ℓ_2 -normalize the resul iteration because the ℓ_2 -norm of an eigenvector is usually

(MAVP)	Experiment 1
(<i>y</i>)	 > In each image experiment, we hat {X₁, X₂,, X₁₀}. All image sizes are 1 random noise patches on to the same available, and we want to reconstrudifferent methods. > We compare our two power iterations regular power iteration (RPI) on 14 exp > Our methods are as robust as ℓ1-PCA be
$\mathbf{x}_{i} , \mathbf{y}_{i})$ $\mathbf{y}_{i})$ $\mathbf{y}_{i}) \min(\mathbf{x}_{i} , \mathbf{y}_{i})$ $ _{1}$ $\mathbf{x}_{i} , \mathbf{y}_{i} , \mathbf{y}_{i} $ $ _{1}$ $\mathbf{x}_{i} , \mathbf{y}_{i} , \mathbf{y}_{i} $ $ _{1}$ $\mathbf{x}_{i} , \mathbf{y}_{i} , \mathbf{y}_{i} $ $ _{1}$ $\mathbf{x}_{i} , \mathbf{y}_{i} , \mathbf{y}_{i} , \mathbf{y}_{i} $ $ _{1}$ $\mathbf{x}_{i} , \mathbf{y}_{i} , \mathbf{y}_{$	$\begin{bmatrix} a \\ (a) \\ (b) \\ (b) \\ (c) $
n (MAPI)	
trix. ndomly. tion studies. whold ℓ_1 -norm rm after the final y 1.	 The 6,301-node dataset Gnutella08's to RPI: 367, 249, 145, 264, 266, 123 MAPI: 266, 123, 367, 127, 424 The 8,114-node dataset Gnutella09's to RPI: 351, 563, 822, 534, 565, 123 MAPI: 351, 822, 51, 1389, 563 MAPI: 351, 822, 51, 1389, 563 Gnutella08's has 7 common top-10 rate 226, 123, 127 Gnutella09's has 8 common top-10 rate 825, 1389, 356, 530. If we use MAPI to replace the RPI in the results (what links will be shown on the searching time will be reduced signification of the searching time will be reduced signification.

Experiment 2: Synthetic Dataset L: Image Reconstruction ave 10 different occluded images (like (b) shows): - - ·RPI 128x128. The occluded images are obtained by adding -MAPI I-(w_t^Tu₁/||w_t||)² 9.0 e original image. Suppose the original image (a) is not uct (a). (c)—(f) shows the reconstructed results from s (min1-PI and min2-PI) with the recursive ℓ_1 -PI and the periments. pased restoration, and they overbeat the RPI obviously. -- RPI -MAPI 0.008 900.0 ^{[w} 5 0.004 0.002 RPI versus MAPI on a synthetic dataset. MAPI does not converge to the same vector (d) (e) (f)

occluded images; (c) recursive &1-PCA) min1-PI results; (f) min2-PI results.

Iin1-PI on a synthetic dataset. We plot iteration time t VS 1 - 1

.3863, 0.1285, -0.1315, -0.4330, -0.2097, -0.5770, -0.2106 0.3887, 0.1480, -0.1508, -0.4306, -0.2359, -0.5362, -0.2370the smallest, **both vectors produce the same ranks** {**2**, **4**, **5**, **3**, **6**, **1**, **8**, **10**, **7**, **9**}.

Multiplication-Avoiding Power Iteration (MAPI)

op-10 ranks of the indices: 123, 127, 122, 1317, 5; 4, 249, 145, 264, 427, 251. op-10 ranks of the indices: 825, 1389, 1126, 356, 530, 3, 565, 530, 825, 356, 1074. inks of indices: 367, 249, 145, 265,

inks of indices: 351, 563, 822, 565,

the PageRank algorithm, searching he first page) will be close, but the antly.

PageRank convergence curves on Gnutella

as RPI because the equations are different, but the vectors produce the same ranks.

$$\left(\frac{w_t^T u_1}{||w_t||}\right)^2$$
. w_t is the result vector from PI,