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Sequence-to-sequence model
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Conditional likelihood maximization

Given a pair of sequential data (x,y),
where x and y are source and target sequences

Seq2seq learning aims to learn a mapping function fx→y

A standard seq2seq model is an encoder-decoder framework

− encoder: extract features hx from x
− decoder: generate target sequence y with condition on hx

Conditional probability is calculated by

p(y|x) =
∏
yi∈y

p(yi|y1, y2, · · · , yi−1,x)
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RNN-based seq2seq model

Encoder-decoder framework can be implemented by RNN

Recurrent neural network extracts hidden features ht via

hx
t = RNN(hx

t−1,xt)
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Attention mechanism

Attention was first proposed by Bahdanau et al. (2014)

Basic attention needs query q, keys K, values V

c = attention(q,K,V ) = softmax(q ·KT )V

where q ∈ R1×d, K ∈ Nk × d, and V ∈ Nk × d

q and K determine which rows in values should be focused more

c =

Nk∑
i=1

aiV [i]

where a = softmax(q ·KT ), where a ∈ R1×Nk
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RNN-based seq2seq model with attention
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Self attention

− queries Q, keys K, and values V are the same features
− extracts features from self domain

Cross attention

− queries Q are different from Keys K and values V
− obtains features from the other domain
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Transformer-based seq2seq model

Left part: Encoder

Right part: Decoder

Main modules (Vaswani
et al., 2017)

− position embedding
− multi-head attention
− point-wise feed forward

network
− masked multi-head

attention
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Multi-head self attention
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Masked multi-head self attention
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Learning procedure
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Language model
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Masked language model
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Masked language model

Objective

− conditional probability
p(x|xmasked)

Optimization

− minimize
−

∑
xi∈x

log p(xi|xmasked)
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Motivation of this study

Language understanding plays an important role in NLP

Masked language model can effectively enhance language
understanding. Mask strategy rely on the process of randomization

Effectively choosing the mask strategy is crucial

Most cover strategies are mainly based on random mask
− Randomly select 15% of input tokens. A large dataset is required

∗ replace 80% of them with the token [mask]
∗ 10% remain unchanged
∗ 10% randomly replace other words

We propose the “adversarial mask transformer”

− use the adversarial learning to learn different mask strategies
− adapt the mask strategy to different tasks via their datasets
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Adversarial masked language model

Objective

− conditional policy
π(m|x)

− conditional probability
p(x|xmasked)

Optimization

− minimize θ
−

∑
xi∈x

log pθ(xi|xmasked)

− maximize ϕ
E(R(x) log πϕ(m|x))
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Adversarial learning vs. adversarial mask learning
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Policy gradient for adversarial mask learning

Policy gradient is implemented to choose mask

∇J(ϕ) = E[∇ log πϕ(a|s)R(s)]

Mask is generated by m ∼ π(·|x)
We define the loss of MLM as an intrinsic reward

LE(θ) = −
lx∑
i=1

log p(xi|xmasked)

General objective function of adversarial learning considers

min
G

max
D

E[log(D(x))] + E[log(1−D(G(z)))]

Adversarial mask learning follows the objective

J(θ, ϕ) = min
θ

max
ϕ

E[LE(θ) log πϕ(m|x))]

Maximization for policy gradient, and minimization for MLM
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Algorithm 1: Adversarial mask learning

Masked language model
Initial ϕ, the parameters of approximation function, randomly
for episode e ∈ {1, 2, ..., N} do

initialize state st = xt

Rt =
∑T

t=1 rt
for t ∈ {1, 2, ...T} do

sample at from policy distribution π(at|xt)
given next sentence xt+1

given rt = −LE(θ)
store (xt, at, rt) into buffer

end

ϕ← ϕ+
α

N

N∑
e=1

T∑
t=1

Rt∇ϕlogπϕ(at|xt)

end
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Adversarial Mask Transformer

Transformer encoder

− extracts x features

Transformer decoder

− extracts y features
− grasps x features

Objective

− conditional probability
p(yi|y1, · · · yi−1,x)

Optimization

− minimize
−

∑
yi∈y

log p(yi|y1, · · · yi−1,x)
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Model configuration

Our model uses the standard setting as transformer

− number of heads 8
− number of layers 6

Our model uses the setting as dynamic mask module

− number of heads 8
− number of layers 2

Word embedding for source and target is 512 units

Hidden size for source and target is 512 units

Trained by Adam optimizer

− batch size 128
− initial learning rate 0.0005

BLEU scores are evaluated
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IWSLT and WMT machine translation tasks

IWSLT German(De)-to-English(En) translation task

− training set 200k pairs of sentences
− validation set 7k pairs of sentences
− test set 7k pairs of sentences
− vocabulary size of 10k words

Language Sentences

German

oft ist es abwasser , was uns verstopft .
was macht man , wenn man solch eine unterbrechung im fluss hat ?

stephen palumbi : der spur des quecksilbers folgen
sie wären unter meinem niveau .

English

often what jams us up is sewage .
what do you do when you have this sort of disrupted flow ?

stephen palumbi : following the mercury trail
i really thought they were so beneath me .
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Results on IWSLT translation between German and English

Model En→De De→En

ConvS2S (Gehring et al., 2017) 26.1 31.9
Transformer (Vaswani et al., 2017) 28.6 34.4
Weighted Transformer (Ahmed et al., 2017) 28.9 35.1
Evolved Transformer (So et al., 2019) 30.4 36.0
BERT-fused model (Zhu et al., 2020) 30.5 36.1
Adversarial Mask Transformer 30.9 36.6
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Results on WMT English to German

Model BLEU

ConvS2S (Gehring et al., 2017) 25.2
Transformer (Vaswani et al., 2017) 26.2
Weighted Transformer (Ahmed et al., 2017) 27.2
Evolved Transformer (So et al., 2019) 28.4
BERT-fused model (Zhu et al., 2020) 28.3
Adversarial Mask Transformer 28.9

Results on MLM-fused models on WMT English to German

Model BLEU

BERT+LM (Devlin et al., 2019) 24.9
Transformer with Mask-Predict (Ghazvininejad et al., 2019) 27.7
MASS (Song et al., 2019) 28.3
Adversarial Mask Transformer 28.9
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Conclusions

− adversarial mask learning is proposed

− this method combines adversarial learning and reinforcement learning

− a small dataset can be used to generalize for a model with large dataset

− pretrained and then fine-tuned

− experiments show this model can improve the translation result

Future works

− learning of mask strategy can be changed to a specific target task

− other sequential learning applications

− text summarization

∗ raise the mask strategy from word level to sentence level
∗ reward is defined as just guessing some part of the sentence

− question answering

∗ add the masked language model to train decoder
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