Adversarial Mask Transformer for Sequential Learning

Hou Lio Shang-En Li Jen-Tzung Chien

National Yang Ming Chiao Tung University jtchien@nycu.edu.tw

ICASSP 2022, Singapore

2 Adversarial mask transformer

3 Experiments

Outline

1 Introduction

- Sequential learning
- Transformer

2 Adversarial mask transformer

3 Experiments

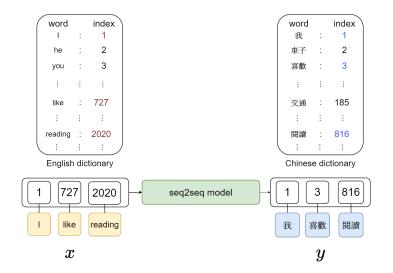
Outline

1 Introduction

- Sequential learning
- Transformer
- 2 Adversarial mask transformer

3 Experiments

Sequence-to-sequence model



Conditional likelihood maximization

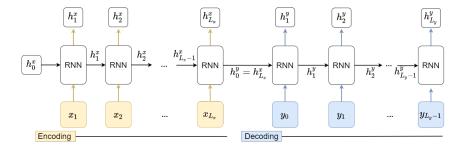
- Given a pair of sequential data (x, y), where x and y are source and target sequences
- Seq2seq learning aims to learn a mapping function $f_{x \to y}$
- A standard seq2seq model is an encoder-decoder framework
 - encoder: extract features $oldsymbol{h}_x$ from $oldsymbol{x}$
 - decoder: generate target sequence $m{y}$ with condition on $m{h}_x$
- Conditional probability is calculated by

$$p(\boldsymbol{y}|\boldsymbol{x}) = \prod_{y_i \in \boldsymbol{y}} p(y_i|y_1, y_2, \cdots, y_{i-1}, \boldsymbol{x})$$

RNN-based seq2seq model

- Encoder-decoder framework can be implemented by RNN
- Recurrent neural network extracts hidden features $oldsymbol{h}_t$ via

$$\boldsymbol{h}_t^x = \mathsf{RNN}(\boldsymbol{h}_{t-1}^x, \boldsymbol{x}_t)$$



Outline

1 Introduction

- Sequential learning
- Transformer

2 Adversarial mask transformer

3 Experiments

Attention mechanism

- Attention was first proposed by Bahdanau et al. (2014)
- ullet Basic attention needs query q, keys K, values V

$$\boldsymbol{c} = \mathsf{attention}(\boldsymbol{q}, \boldsymbol{K}, \boldsymbol{V}) = \mathsf{softmax}(\boldsymbol{q} \cdot \boldsymbol{K}^T) \boldsymbol{V}$$

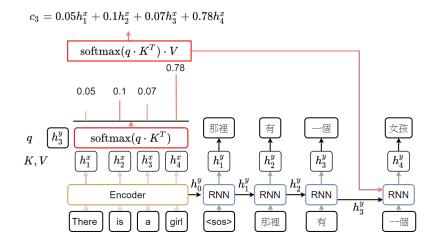
where $\boldsymbol{q} \in R^{1 \times d}$, $\boldsymbol{K} \in N_k \times d$, and $\boldsymbol{V} \in N_k \times d$

ullet q and K determine which rows in values should be focused more

$$oldsymbol{c} = \sum_{i=1}^{N_k} a_i oldsymbol{V}[i]$$

where $oldsymbol{a} = \mathsf{softmax}(oldsymbol{q} \cdot oldsymbol{K}^T)$, where $oldsymbol{a} \in R^{1 imes N_k}$

RNN-based seq2seq model with attention

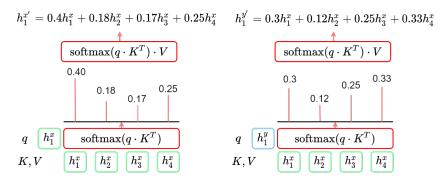


• Self attention

- queries $oldsymbol{Q}$, keys $oldsymbol{K}$, and values $oldsymbol{V}$ are the same features
- extracts features from self domain

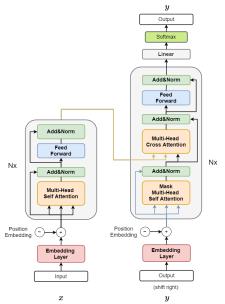
Cross attention

- queries $oldsymbol{Q}$ are different from Keys $oldsymbol{K}$ and values $oldsymbol{V}$
- obtains features from the other domain

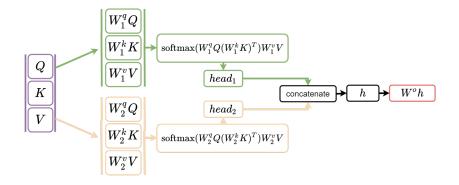


Transformer-based seq2seq model

- Left part: Encoder
- Right part: Decoder
- Main modules (Vaswani et al., 2017)
 - position embedding
 - multi-head attention
 - point-wise feed forward network
 - masked multi-head attention



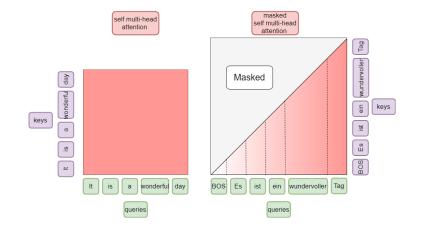
Multi-head self attention

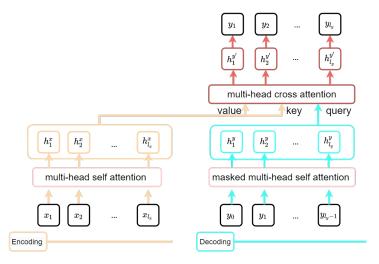


 $MultiHead(Q, K, V) = W^{o}Concatenate(head_1, head_2, \cdots)$

 $head_i = \operatorname{Attention}(W_i^q Q, W_i^k K, W_i^v V)$

Masked multi-head self attention





2 Adversarial mask transformer

- Masked language model
- Adversarial mask transformer

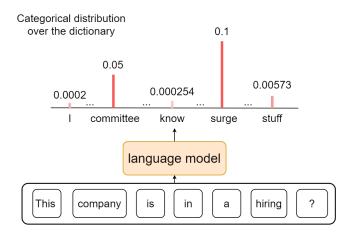
3 Experiments



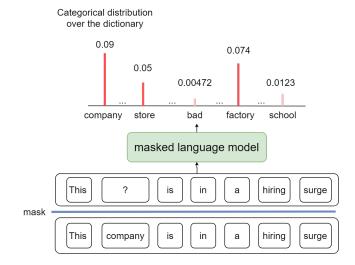
2 Adversarial mask transformer

- Masked language model
- Adversarial mask transformer

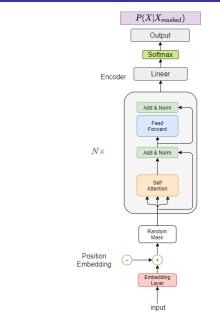
3 Experiments



Masked language model



Masked language model



Objective

- conditional probability $p({m x}|{m x}_{masked})$
- Optimization
 - minimize

$$-\sum_{x_i \in \boldsymbol{x}} \log p(x_i | x_{masked})$$

- Language understanding plays an important role in NLP
- Masked language model can effectively enhance language understanding. Mask strategy rely on the process of randomization
- Effectively choosing the mask strategy is crucial
- Most cover strategies are mainly based on random mask
 - $-\,$ Randomly select 15% of input tokens. A large dataset is required
 - * replace 80% of them with the token [mask]
 - * 10% remain unchanged
 - *~10% randomly replace other words
- We propose the "adversarial mask transformer"
 - use the adversarial learning to learn different mask strategies
 - adapt the mask strategy to different tasks via their datasets

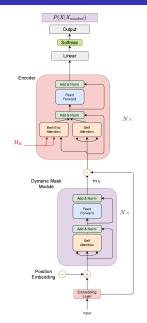
- 2 Adversarial mask transformer
 - Masked language model
 - Adversarial mask transformer

3 Experiments

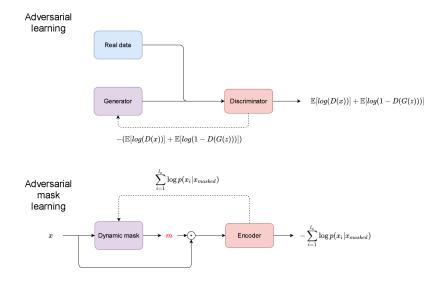
Adversarial masked language model

Objective

- conditional policy $\pi(\boldsymbol{m}|\boldsymbol{x})$
- conditional probability $p({m x}|{m x}_{masked})$
- Optimization
 - minimize θ
 - $-\sum_{x_i \in \boldsymbol{x}} \log p_{\theta}(x_i | \boldsymbol{x}_{masked})$
 - $\begin{array}{c} \underset{x_i \in \boldsymbol{x}}{\text{maximize } \phi} \\ E(R(x) \log \pi_{\phi}(\boldsymbol{m} | \boldsymbol{x})) \end{array}$



Adversarial learning vs. adversarial mask learning



Policy gradient for adversarial mask learning

Policy gradient is implemented to choose mask

$$\nabla J(\phi) = \mathbb{E}[\nabla \log \pi_{\phi}(a|s)R(s)]$$

- Mask is generated by $m \sim \pi(\cdot|x)$
- We define the loss of MLM as an intrinsic reward

$$\mathcal{L}_E(\theta) = -\sum_{i=1}^{l_x} \log p(x_i | x_{masked})$$

• General objective function of adversarial learning considers

$$\min_{G} \max_{D} \mathbb{E}[\log(D(x))] + \mathbb{E}[\log(1 - D(G(z)))]$$

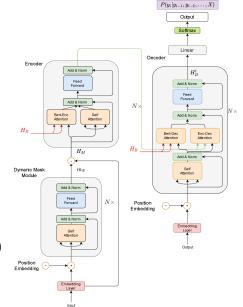
• Adversarial mask learning follows the objective

$$J(\theta, \phi) = \min_{\theta} \max_{\phi} \mathbb{E}[\mathcal{L}_E(\theta) \log \pi_{\phi}(m|x))]$$

Maximization for policy gradient, and minimization for MLM

Algorithm 1: Adversarial mask learning

Masked language model Initial ϕ , the parameters of approximation function, randomly for episode $e \in \{1, 2, ..., N\}$ do initialize state $s_t = x_t$ $R_t = \sum_{t=1}^T r_t$ for $t \in \{1, 2, ..., T\}$ do sample a_t from policy distribution $\pi(a_t|x_t)$ given next sentence x_{t+1} given $r_t = -\mathcal{L}_E(\theta)$ store (x_t, a_t, r_t) into buffer end $\phi \leftarrow \phi + \frac{\alpha}{N} \sum_{t=1}^{N} \sum_{t=1}^{T} R_t \nabla_{\phi} \mathsf{log} \pi_{\phi}(a_t | x_t)$ end



• Adversarial Mask Transformer

- Transformer encoder
 - extracts x features
- Transformer decoder
 - extracts $oldsymbol{y}$ features
 - grasps $oldsymbol{x}$ features
- Objective
 - conditional probability $p(y_i|y_1, \cdots y_{i-1}, \boldsymbol{x})$
- Optimization
 - minimize

$$-\sum_{y_i \in \boldsymbol{y}} \log p(y_i|y_1, \cdots y_{i-1}, \boldsymbol{x})$$

2 Adversarial mask transformer

3 Experiments

- Experimental setup
- Experimental results

2 Adversarial mask transformer

3 Experiments

- Experimental setup
- Experimental results
- 4 Conclusions and future works

Model configuration

- Our model uses the standard setting as transformer
 - number of heads 8
 - number of layers 6
- Our model uses the setting as dynamic mask module
 - number of heads 8
 - number of layers 2
- Word embedding for source and target is 512 units
- Hidden size for source and target is 512 units
- Trained by Adam optimizer
 - batch size 128
 - initial learning rate 0.0005
- BLEU scores are evaluated

IWSLT and WMT machine translation tasks

• IWSLT German(De)-to-English(En) translation task

- training set 200k pairs of sentences
- validation set 7k pairs of sentences
- test set 7k pairs of sentences
- vocabulary size of 10k words

Language	Sentences
German	oft ist es abwasser , was uns verstopft .
	was macht man , wenn man solch eine unterbrechung im fluss hat ?
	stephen palumbi : der spur des quecksilbers folgen
	sie wären unter meinem niveau .
English	often what jams us up is sewage .
	what do you do when you have this sort of disrupted flow ?
	stephen palumbi : following the mercury trail
	i really thought they were so beneath me .

2 Adversarial mask transformer

3 Experiments

- Experimental setup
- Experimental results

• Results on IWSLT translation between German and English

Model	$En{\rightarrow}De$	$De{\rightarrow}En$
ConvS2S (Gehring et al., 2017)	26.1	31.9
Transformer (Vaswani et al., 2017)	28.6	34.4
Weighted Transformer (Ahmed et al., 2017)	28.9	35.1
Evolved Transformer (So et al., 2019)	30.4	36.0
BERT-fused model (Zhu et al., 2020)	30.5	36.1
Adversarial Mask Transformer	30.9	36.6

• Results on WMT English to German

Model	BLEU
ConvS2S (Gehring et al., 2017)	25.2
Transformer (Vaswani et al., 2017)	26.2
Weighted Transformer (Ahmed et al., 2017)	27.2
Evolved Transformer (So et al., 2019)	28.4
BERT-fused model (Zhu et al., 2020)	28.3
Adversarial Mask Transformer	28.9

• Results on MLM-fused models on WMT English to German

Model	BLEU
BERT+LM (Devlin et al., 2019)	24.9
Transformer with Mask-Predict (Ghazvininejad et al., 2019)	
MASS (Song et al., 2019)	28.3
Adversarial Mask Transformer	28.9

2 Adversarial mask transformer

3 Experiments

Conclusions

- adversarial mask learning is proposed
- this method combines adversarial learning and reinforcement learning
- $-\,$ a small dataset can be used to generalize for a model with large dataset
- pretrained and then fine-tuned
- experiments show this model can improve the translation result

• Future works

- learning of mask strategy can be changed to a specific target task
- other sequential learning applications
- text summarization
 - * raise the mask strategy from word level to sentence level
 - * reward is defined as just guessing some part of the sentence
- question answering
 - * add the masked language model to train decoder

References I

- K. Ahmed, N. S. Keskar, and R. Socher, "Weighted transformer network for machine translation," arXiv preprint arXiv:1711.02132, 2017.
- [2] D. Bahdanau, K. Cho, and Y. Bengio, "Neural machine translation by jointly learning to align and translate," arXiv preprint arXiv:1409.0473, 2014.
- [3] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, "BERT: Pre-training of deep bidirectional transformers for language understanding," in *Proc. of Conference of North American Chapter of Association for Computational Linguistics*, 2019, pp. 4171–4186.
- [4] J. Gehring, M. Auli, D. Grangier, D. Yarats, and Y. N. Dauphin, "Convolutional sequence to sequence learning," in *Proc. of International Conference of Machine Learning*, 2017, pp. 1243–1252.
- [5] M. Ghazvininejad, O. Levy, Y. Liu, and L. Zettlemoyer, "Mask-Predict: Parallel decoding of conditional masked language models," in *Proc. of Conference on Empirical Methods in Natural Language Processing*, 2019, pp. 6111–6120.
- [6] D. R. So, Q. V. Le, and C. Liang, "The evolved transformer," in Proc. of International Conference of Machine Learning, 2019, pp. 5877–5886.
- [7] K. Song, X. Tan, T. Qin, J. Lu, and T. Liu, "MASS: masked sequence to sequence pre-training for language generation," in *Proc. of International Conference of Machine Learning*, 2019, pp. 5926–5936.
- [8] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and I. Polosukhin, "Attention is all you need," in *Advances in Neural Information Processing Systems*, 2017, pp. 5998–6008.

- [9] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and I. Polosukhin, "Attention is all you need," in *Advances in neural information processing* systems, 2017, pp. 5998–6008.
- [10] J. Zhu, Y. Xia, L. Wu, D. He, T. Qin, W. Zhou, H. Li, and T.-Y. Liu, "Incorporating BERT into neural machine translation," in *Proc. of International Conference on Learning Representations*, 2020.