® During training, given an input sequence
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Introduction

® An adversarial mask mechanism is presented to deal with the
shortcoming of random mask and accordingly enhance the
robustness in word prediction for language understanding.

® A new architecture called the adversarial mask transformer

(AMT) is proposed. We present the adversarial training and
iIncorporate the contextual robustness in a sequential model
based on the transformer.

Mask Language Model

X = {xn}_,  with

length 1; the masked language model aims to calculate

Unlike the traditional language model that is in left-to-right
order p(X;,|X1, -+ ,Xm—1) , the masked language model is able to
use both the left and the right contexts.

® A mask language model can be easily adapted into task-specific

model, which is then fine-tuned by using the labeled data to
achieve optimal performance.

Adversarial Learning

Adversarial learning is eligible to incorporate the adversarial
examples to improve generalization.

A minimax formulation can be introduced where the adversarial
examples are generated to maximize a loss function and the mode
Is trained to minimize the loss function.

These considerations have motivated us to design an adversarial
algorithm to generate a mask to perturb the actual text instead of
adapting the embedding.
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Adversarial Mask Transformer

® Adversarial mask transformer contains the BERT enhanced attention
layers in both encoder and decoder as well as the adversarial mask
module in the encoder. Y
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® Different from the mask language model using random mask, we
present a new transformer with the attention based adversarial mask.
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® Adversarial mask is run by M, = g4,(HWy) using X,, = M,X where
9g¢ is the mapping function to find binary mask My and W; is the
parameter of feedforward network with the outputs which are used
to calculate the unnormalized log probability for different masked
tokens.

J(0,0) = 111;11 max X ~op(x) [P0 (X[ X (My))].

® The encoder head is integrated from the heads using X,, and X, as
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® The conditional likelihood for prediction of an output sample ¥Y» of
Y is calculated via the decoder or classifier

p(yn ‘y{]:n—lr X) — DeCOder(y():n—lf Hem:; Qd)'
® The adversarial learning objective of using AMT for sequence-to-

sequence learning is

J (0,04, ) =min max Ex~p(x)[po. (X|Xm(My))]
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Experiments

® This study conducted the evaluation on machine translation
over different languages with various sizes of training data.

® |WSLT and WMT datasets were used to evaluate different
machine translation models.

® The following two table report the evaluation results using
IWSLT and WMT datasets, respectively.

Model En—De De—En
ConvS2S [23] 26.1 319
Transformer [9] 28.6 34.4
Weighted Transformer [24] 28.9 35.1
Evolved Transformer [25] 30.4 36.0
BERT-fused model [26] 30.5 36.1

Adversarial Mask Transformer 30.9 36.6

Model BLEU
ConvS2S [23] 25.2
Transformer [9] 26.2
Weighted Transformer [24] 27.2
Evolved Transformer [25] 28.4
BERT-fused model [26] 28.3

Adversarial Mask Transformer 28.9

® The following table reports the translation results using
different mask language models (MLMs).

Model BLEU
BERT+LM [13] 24.9
Transformer with Mask-Predict [27] 27.7
MASS [28] 2R8.3
Adversarial Mask Transformer 28.9

Conclusions

® We presented an approach to mask the important information
In sentences.

® The masked sentence was used as the input to a new
transformer, where the encoder was used to predict the
masked words.

® We developed the adversarial learning to allow the model to
learn different masks adaptively instead of random methods.
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