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Signal Models

• A narrowband and point-source signal is observed by an N -antenna ULA:

y(t) = s(t)a+ i(t) + n(t),

where

– s(t) is the desired signal waveform and a is the steering vector;
– i(t) denotes the interference;
– n(t) represents the array noise;
– s(t)a and i(t) + n(t) are statistically independent.

• The array outputs the weighted signal

x(t) = wHy(t),

• w is an N × 1 weight vector (to be optimized in subsequent designs).
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Maximization of the Array Output SINR

• Output SINR of the array

SINR =
σ2
s |w

Ha|2

wHRi+nw
,

• The SINR maximization problem is equivalent to the following problem:

minimize
w

wHRi+nw subject to |wHa| ≥ 1.

• A closed-form solution (MVDR beamformer): w⋆ = 1

aHR
−1
i+na

R−1
i+n

a.

• The interference-plus-noise covariance (INC) matrix Ri+n is often unavailable.

• The true steering vector a cannot be predefined accurately.
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• The beamformer performance is degraded significantly even if there is a small
mismatch between Ri+n and its estimate, or/and between a and its estimate.
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DRO-Based Robust Adaptive Beamforming Maximizing the

Worst-Case SINR

• Assume that both Ri+n ∈ HN and a ∈ CN are random variables.

• The DRO-based RAB problem maximizing the worst-case SINR is formulated:

minimize
w

max
G1∈D1

EG1{w
HRi+nw}

subject to min
G2∈D2

EG2{w
HaaHw} ≥ 1.

(1)

– Here, the set D1 of probability distributions is defined as

D1 =







G1 ∈ M1

∣

∣

∣

∣

∣

∣

ProbG1{Ri+n ∈ Z1} = 1
EG1{Ri+n} � 0

‖EG1{Ri+n} − S0‖F ≤ ρ1







, (2)

– S0 is the empirical mean of Ri+n, and the sampling covariance matrix

R̂ = 1
T

∑T

t=1 y(t)y
H(t) is regarded as an alterative of S0;
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– the set D2 of probability distributions is given by

D2 =







G2 ∈ M2

∣

∣

∣

∣

∣

∣

ProbG2{a ∈ Z2} = 1
EG2{a} = a0

EG2{aa
H} = Σ+ a0a

H
0







, (3)

– a0 ∈ CN is the mean, and Σ ≻ 0 is the covariance matrix of random vector a
under the true distribution Ḡ2.

– Both of a0 and Σ are known.
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The Maximization Problem in the Objective

• The inner maximization problem in the objective of the DRO-based RAB problem
is written as

maximize
G1∈M1

∫

Z1
wHRw dG1(R)

subject to
∫

Z1
dG1(R) = 1

∫

Z1
R dG1(R) � 0

∥

∥

∥

∫

Z1
R dG1(R)− S0

∥

∥

∥

F

≤ ρ1.

(4)

• Here, the subscript of Ri+n is dropped for notational simplicity.

• The dual problem is cast as

minimize ρ1‖X‖F + δZ1(wwH +X + Y )− tr (S0X)

subject to X ∈ HN , Y � 0(∈ HN
+ ).

(5)

• In (5), δZ1(·) stands for the support function of Z1, and it is convex.
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• Clearly, the dual problem is a finite-dimension convex optimization problem.

• It is verified that the strong duality holds between them.

• Suppose that the support set Z1 = {R ∈ HN | ‖R‖F ≤ ρ2} is considered.

• Then, the support function δZ1(wwH +X + Y ) = ρ2‖wwH +X + Y ‖F .

• The dual problem is specified to

minimize ρ1‖X‖F + ρ2‖wwH +X + Y ‖F − tr (S0X)

subject to X ∈ HN , Y � 0(∈ HN
+ ).

(6)
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The Minimization Problem in the Constraint

• The minimization problem in the constraint of the DRO-based RAB problem can
be expressed as

minimize
G2∈M2

∫

Z2
aHwwHa dG2(a)

subject to
∫

Z2
dG2(a) = 1

∫

Z2
a dG2(a) = a0

∫

Z2
aaH dG2(a) = Σ+ a0a

H
0 .

(7)

• The dual problem can be derived as follows.

maximize x+ ℜ(aH
0 x) + tr (Z(Σ+ a0a

H
0 ))

subject to aH(wwH −Z)a−ℜ(aHx)− x ≥ 0, ∀a ∈ Z2

Z ∈ HN , x ∈ CN , x ∈ R.

(8)

• The strong duality between the two problems holds.
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• Suppose that Z2 = C
N . The semi-infinite inequality constraint in the dual is

equivalent to the following quadratic matrix inequality (QMI):

[

wwH −Z −x
2

−xH

2 −x

]

� 0. (9)
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Equivalent QMI Reformulation for the DRO-based RAB

Problem

• The original DRO-based RAB problem (1) can be transformed into

minimize ρ1‖X‖F + ρ2‖wwH +X + Y ‖F − tr (S0X)

subject to x+ ℜ(aH
0 x) + tr (Z(Σ+ a0a

H
0 )) ≥ 1

[

wwH −Z −x
2

−xH

2 −x

]

� 0

w,x ∈ CN ,X,Z ∈ HN , Y � 0, x ∈ R.

(10)

• This is a nonconvex QMI problem (w.r.t. w).

• The conventional LMI relaxation technique can be applied, namely, the following
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LMI problem is solved:

minimize ρ1‖X‖F + ρ2‖W +X + Y ‖F − tr (S0X)

subject to x+ ℜ(aH
0 x) + tr (Z(Σ+ a0a

H
0 )) ≥ 1

[

W −Z −x
2

−xH

2 −x

]

� 0

x ∈ CN ,X,Z ∈ HN , W � 0, Y � 0, x ∈ R.

(11)

• If the LMI problem has a rank-one optimal solution w⋆w⋆H , then w⋆ is optimal
for the QMI problem (10).

• A rank-one solution procedure is desired when the LMI relaxation problem admits
an optimal solution W ⋆ of rank more than one.
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Rank-One Solution Procedure for the LMI Relaxation Problem

• Observe that if nonzero W � 0 is of rank one, then trW = ‖W ‖F , and vice
versa.

• The previous condition can also take the form: trW − tr (WW )

‖W ‖F
= 0.

• Therefore, at iteration k of a procedure, the following LMI problem with a penalty
term on the rank-one solution constraint is solved:

minimize ρ1‖X‖F + ρ2‖W +X + Y ‖F − tr (S0X) + α
(

trW − tr (WW k)

‖W k‖F

)

subject to x+ ℜ(aH
0 x) + tr (Z(Σ+ a0a

H
0 )) ≥ 1

[

W −Z −x
2

−xH

2 −x

]

� 0

x ∈ CN ,X,Z ∈ HN , W � 0, Y � 0, x ∈ R,

(12)
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Finding a Rank-One Solution for the LMI Relaxation Problem

(11)

Input: S0, Σ, a0, ρ1, ρ2, α;

Output: A rank-one solution w⋆w⋆H;

1. set k = 0; let W k be a high-rank optimal solution W ⋆ for (11);

2. do

3. solve the LMI problem (12), obtaining solution W k+1;

4. k := k + 1;

5. until
∣

∣

∣
trW k −

tr (W kW k−1)

‖W k−1‖F

∣

∣

∣
≤ 10−6

6. output w⋆ with W k = w⋆w⋆H.
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• It can be shown that the sequence of the optimal values for (12) is descent,
namely, v1 ≥ v2 ≥ · · · , where vk is the optimal value for (12) in iteration k − 1.

• The terminating condition implies that the output solution W k is a rank-one

solution for (12), since tr (W k) ≈
tr (W kW k−1)

‖W k−1‖F
≈ ‖W k‖F .

• The computational complexity is dominated by solving the LMI problem (12) in
each iteration, which is manageable since the problem has only one inequality
constraint and one LMI constraint with size N + 1.
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Simulation Setup

• Scenario: A uniform linear array with N = 10 sensors spaced half a wavelength;

– The angular sector of interest Θ = [0◦, 10◦];
– The actual signal direction θ = 5◦;
– The presumed direction θ0 = 1◦;
– Two interferers located in the directions of θ1 = −5◦ and θ2 = 15◦ with the

same interference-to-noise ratio (INR) of 30 dB;
– The array noise: a spatially and temporally white Gaussian vector with zero

mean and covariance I;
– Wavefront distortion: The phase increments are independent Gaussian variables

each with zero mean and standard deviation 0.02;
– S0 is the sampling covariance matrix (it is different in each run);

– a0 =
1
L

∑L

l=1 d(θl) and Σ = 1
L

∑L

l=1(d(θl)− a0)(d(θl)− a0)
H;

– Parameters ρ1 = 0.001‖S0‖F , ρ2 = 105, and α = 105.

• All results are averaged over 200 simulation runs.
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• Three DRO-based beamformers are compared: The proposed one, LRST beam-
former1, and ZLGL beamformer2.

1B. Li, Y. Rong, J. Sun, and K.L. Teo, “A distributionally robust minimum variance beamformer design,” IEEE

Signal Processing Letters, vol. 25, no. 1, pp. 105–109, Jan. 2018.
2X. Zhang, Y. Li, N. Ge, and J. Lu, “Robust minimum variance beamforming under distributional uncertainty,” in

Proc. 40th IEEE Int. Conf. Acoustics, Speech, and Signal Processing, Brisbane, Australia, Apr. 2015, pp. 2514–2518.
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Simulation Output: Average Array Output SINR versus SNR

• Average array output SINR versus SNR with the number of snapshots T = 100:
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Simulation Output: Average Array Output SINR versus

Number of Snapshots

• Average array output SINR versus number of snapshots with SNR equal to 10 dB:
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Summary

• We have studied the DRO-based RAB problem of maximizing the worst-case SINR
over the distributional sets for random INC matrix and desired signal steering
vector.

• The RAB problem is transformed into a nonconvex QMI problem via the strong
duality theorem of linear conic programming.

• The QMI problem is tackled by iteratively solving a sequence of LMI relaxation
problems with a penalty term on the rank-one constraint.

• The sequence of the optimal values for the LMI relaxation problems is descent,
which means that the algorithm always outputs a rank-one solution when the
penalty weight is large enough.

• Numerical results show that the proposed beamformer outperforms the other two
existing beamformers in terms of the array output SINR.
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