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Objectives
• Use transducer-based models for continuous

and streaming transcription, in the
long-form multi-talker ASR task (e.g.,
LibriCSS [1]).

• Investigate Streaming Unmixing and
Recognition Transducer (SURT) [2], which was
previously evaluated on single-turn sessions.

• How to make the SURT model work for longer
sessions containing multiple speakers?

Introduction

What is continuous streaming ASR?
• Continuous: Does not rely on external

segmentation for long-form audio.
• Streaming: Overlapping speakers should be

transcribed "simultaneously", instead of
one-at-a-time.

Streaming Unmixing and Recognition
Transducer (SURT)
• Unmixer extracts speaker-specific features from

the mixed audio.
• Recognizer is a transducer model which

transcribes the speaker stream.
• Model is trained end-to-end using RNN-T loss.

Evaluation Data

Table: Synthetic evaluation sets

Name Description # spk. # utt. dev test
Tier-1 2-speaker single-turn 2 2 1355 1310
Tier-2 2-speaker multi-turn 2 2-4 892 885
Tier-3 Multi-speaker multi-turn 2-4 2-12 462 450

LibriCSS
• 10-minute sessions containing 8 speakers and

0-40% overlap
• Evaluated in single-channel setting

HEAT vs. PIT
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Figure: The HEAT and PIT objectives
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(a) Delay = 2.0 s
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(b) Delay = 0.0 s

Figure: Training dynamics for HEAT versus PIT based loss
for different utterance delays: (a) 2.0 s, and (b) 0.0 s.

Streaming Dual-path Transducer
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Figure: Dual path RNN

Table: WER results with regular and dual-path encoders.

Encoder Size (M) Tier-1 Tier-2 Tier-3
dev test dev test dev test

LSTM 75.6 M 13.6 13.8 15.9 17.1 20.9 21.0
DP-LSTM 65.4 11.1 11.4 13.0 14.1 19.6 19.6
DP-Transformer 42.9 11.1 12.2 13.5 14.5 17.9 18.6

Important training tricks:
• Chunk width randomization
• Curriculum learning
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Figure: Streaming Unmixing and Recognition Transducer (SURT).

Limitation with the vanilla SURT

LSTM-based SURT models trained on single-turn
sessions cannot generalize to multi-turn sessions.

Train \Eval Tier-1 Tier-2 Tier-3
Single-turn 11.1 17.6 24.9
Multi-turn 13.6 15.9 20.9

Idea: How can we train with multi-turn sessions?

Accuracy vs. Latency
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(a) DP-LSTM
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Figure: Accuracy vs. latency trade-off for dual-path models.

Results on LibriCSS

Model Overlap ratio in %
0L 0S 10 20 30 40

BLSTM CSS + Hybrid ASR [1] 16.3 17.6 20.9 26.1 32.6 36.1
Conformer CSS + E2E ASR 6.1 6.9 9.1 12.5 16.7 19.3
SURT w/ DP-LSTM 9.8 19.1 20.6 20.4 23.9 26.8
SURT w/ DP-Transformer 9.3 21.1 21.2 25.9 28.2 31.7

The main sources of errors were
• leakage in single-speaker regions, and
• omissions, where some utterances were missed by

both channels.
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