Continuous Streaming Multi-talker ASR with Dual-path Transducers

Objectives

- Use transducer-based models for **continuous** and **streaming** transcription, in the long-form multi-talker ASR task (e.g., LibriCSS [1]).
- Investigate Streaming Unmixing and Recognition Transducer (SURT) [2], which was previously evaluated on single-turn sessions.
- How to make the SURT model work for longer sessions containing multiple speakers?

Introduction

What is continuous streaming ASR?

- **Continuous:** Does not rely on external segmentation for long-form audio.
- Streaming: Overlapping speakers should be transcribed "simultaneously", instead of one-at-a-time.

Streaming Unmixing and Recognition Transducer (SURT)

- Unmixer extracts speaker-specific features from the mixed audio.
- *Recognizer* is a transducer model which transcribes the speaker stream.
- Model is trained end-to-end using RNN-T loss.

Evaluation Data

Name	Description	# spk.	# utt.	dev	test
Tier-1	2-speaker single-turn	2	2	1355	1310
Tier-2	2-speaker multi-turn	2	2-4	892	885
Tier-3	Multi-speaker multi-turn	2-4	2-12	462	450

Table: Synthetic evaluation sets

LibriCSS

- 10-minute sessions containing 8 speakers and 0-40% overlap
- Evaluated in single-channel setting

Desh Raj¹, Liang Lu², Zhuo Chen², Yashesh Gaur², Jinyu Li²

⁻ Center for Language and Speech Processing, Johns Hopkins University, Baltimore, USA ² Microsoft Corp., Redmond, USA

for different utterance delays: (a) 2.0 s, and (b) 0.0 s.

Figure: Streaming Unmixing and Recognition Transducer (SURT).

Limitation with the vanilla SURT

LSTM-based SURT models trained on single-turn sessions cannot generalize to multi-turn sessions.

$\overline{\text{Train } \setminus \text{Eval}}$	Tier-1	Tier-2	Tier-3
Single-turn	11.1	17.6	24.9
Multi-turn	13.6	15.9	20.9

Idea: How can we train with multi-turn sessions?

Streaming Dual-path Transducer

Figure: Dual path RNN

Table: WER results with regular and dual-path encoders.

ncoder	Size (M)	Tie	er-1	Tie	er-2	Tier-3	
		dev	test	dev	test	dev	test
STM	75.6 M	13.6	13.8	15.9	17.1	20.9	21.0
P-LSTM	65.4	11.1	11.4	13.0	14.1	19.6	19.6
P-Transformer	42.9	11.1	12.2	13.5	14.5	17.9	18.6

Important training tricks:

• Chunk width randomization • Curriculum learning

Accuracy vs. Latency

Figure: Accuracy vs. latency trade-off for dual-path models.

Model

BLSTN Conform SURT SURT

- 2021.

Results on LibriCSS

1	Overlap ratio in %						
5 1	0L	0S	10	20	30	40	
M CSS + Hybrid ASR [1]	16.3	17.6	20.9	26.1	32.6	36.1	
mer $CSS + E2E ASR$	6.1	6.9	9.1	12.5	16.7	19.3	
w/ DP-LSTM	9.8	19.1	20.6	20.4	23.9	26.8	
w/ DP-Transformer	9.3	21.1	21.2	25.9	28.2	31.7	
w/ DP-LSTM w/ DP-Transformer	9.8 9.3	19.1 21.1	$\frac{9.1}{20.6}$ 21.2	12.0 20.4 25.9	23.9 28.2	26. 31	

The main sources of errors were

• *leakage* in single-speaker regions, and

• *omissions*, where some utterances were missed by both channels.

References

[1] Z. Chen, T. Yoshioka, L. Lu, T. Zhou, Z. Meng, Y. Luo, J. Wu, and J. Li. Continuous speech separation: Dataset and analysis. In *IEEE ICASSP*, 2020.

[2] L. Lu, N. Kanda, J. Li, and Y. Gong. Streaming end-to-end multi-talker speech recognition. *IEEE Signal Processing Letters*,

[3] Y. Luo, Z. Chen, and T. Yoshioka. Dual-path RNN: Efficient long sequence modeling for time-domain single-channel speech separation. In *IEEE ICASSP*, 2020.

Acknowledgements

We thank Naoyuki Kanda and Takuya Yoshioka for providing some of the data simulation scripts and insightful discussions.

Contact Information

• Web: https://desh2608.github.io • Email: r.desh260gmail.com

• Twitter: **@rdesh26**

Microsoft