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+ Words should be grouped by phonetics at first.
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Here we control the words by each of the five prosody tags.
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In most cases it's easy to identify the true prosody tags. This
means real word-level prosody can be represented and
reconstructed with our prosody tags. Also, our method owns
good prosody diversity, as other tags sound differently.

This results in better naturalness
compared with raw FastSpeech2 and
PLP_MDN, a phone-level prosody
modeling approach (Du, 2021), as
words are more appropriate prosody
modeling units.

phonetic information are split out of
the prosody embeddings.
Methods We choose 10 leaves and apply GMM
with 5 components for each leaf. This
generates 50 prosody tags in total.
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