Learning Music Sequence Representation from Text Supervision
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Introduction

* Music data is relatively quantity-small but with sufficient supervision information
in their text-form metadata (e.g., lyrics, album, descriptions, lyricist, composer,
singer, comments), which are still under-explored.

* We propose a novel text supervision method to learn directly from text-form
metadata, called MUSER.

* We design an additional spectrogram encoder that greatly improves data
efficiency of the CLIP-style framework.

* We propose a novel tri-modal contrastive pre-training framework and achieve

L state-of-the-art on music-related benchmarks.
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Figure 1 Overview of our training framework. First, we convert different forms of metadata
into a unified plain text format. Then, the plain text sequence and the audio sequence of
music will be encoded respectively into a shared embedding space. Also, the music spectrum
is encoded to learn text-form concepts from multi-view. By using the shared embedding space,
we apply CLIP-style contrastive learning, which aims to distinguish music sequence by their
corresponding text.

* A text template example
A song of {hip-hop}, belongs to

{fast-rhythm music}, whose Algorithm 1: Contrastive Learning of MUSER.

style is {inspiring}. Data: all labeled training music sequence A, text T,
spectrum S pairs, and label ).

Input: encoders Fyyd, Fixt, Fipec: weights W, W,
W, temperature parameter 7; batch size n.

while not done do

 Tri-modal Embeddings calculation
The tri-modal inputs will be

1
encoded respectively into a shared 2 | Sample batches (4;.T;, S;,Y;) ~ (A, T,S,)).
embedding space. 3 | forall (4;,T;,S;,Y:) do
4 E.41- y ETE- , E.S';- — Faud(A-i): FH[(TE)? FHPEC(S'i)'
* Contrastive learning 5 Eaibr, Bs,  Wabiay, Wibm, Woks,
Cosine similarity is used to 6 Compute logits Yar, Yra, Ysr, Frs as: eg.
measure the distance between ?41”1- ;Eﬂfﬂ E; Cf}{‘{lpute losses
embeddings. we optimize ;T‘“_'Tg“ ET“ TS 2 S8 L
_ _ at, = CrossEntropy(Yar., Y;, azis = 0).
embeddings together with an 7 Compute overall loss
asymmetric contrastive loss. l; = (bar, +lpa, +Lst, +l1s,) /4.
§ | end
L(i. j:60. 0k )= — log — exp(D(Eq,,Ek,)/7) 9 | Update encoders and weights with loss £ =" ;.
' - ;"zl_j#i.cxpl[D[Et_;f.Eh-j);-""r]l 10 end

L(i,5:04,07.05) = L(i,j:04,07)+ L(i,j:0s,07)
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Experiment & Results

Datasets

* Free Music Archive (FMA) We use the small subset of FMA, a balanced subset
containing 8,000 clips. We rely on templates to concatenate the genre, parent
genre, and top-level tag of each audio together.

e GTZAN We choose GTZAN as the dataset for genre classification task. which
contains 1,000 tracks of 30-second length.

* MagnaTagATune (MTT) We choose MTT as the benchmark dataset for

automatic tagging task. We limit the vocabulary to the top 50 most popular tags.

Baselines

* VGGish This baseline is pre-trained on a large-scale video dataset (AudioSet)
with a classification task.

* CLMR This baseline first introduced the contrastive pre-training techniques,
which enable unsupervised music sequence representation learning.

* CLAM This baseline first proposed for unconditional speech. It codifies a high-
rate continuous audio sequence into low-rate discrete codes. Then a language
model is trained on resulting codified audio and optional meta-data to produce
high-quality contextual representations.

*  Multi-task We divide the pre-training into several sub-tasks of a shared encoder
according to the annotations.

MUSER with far less pre-training data

Method Source Audio / Text

VGGish[21]  YouTube-8M 350000h / 8M Table 1 Datasets for Music

CLMR[22]  Not mentioned 2200h / 260k Sequence Pre-training. The

CALM[23]  Jukebox 240000h / 1.2M quantity of pre-training data
FMA (small subset) ~ 66.7h/ 8k used is less than 0.1% of other
MTT (train) 127h / 15k .

. re-trained models.

MUSER GTZAN (train) 3.7h / 0.4k P

Total 195.8h / 23.5k

MUSER with promising performance

?;Ti ng;;tuc} T'ii:{;m GE"E;ES {;m Table 2 Performance on
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CLMR 20 4 2 1 6 music understanding

CALM 915 414 20 7 benchmarks. Our MUSER

AE only (MT., PT) 88.7 38.4 59.7 (PT+FT) outperforms SOTA on
State-of-the-art 91.5 42.2 82.1 der brings a obvious
MUSER (AE only) 875 363 66.6 €nco 5

MUSER (w/o spec) 88.1 39.6 75.2 improvement on both tasks.
MUSER (PT) 88.7 41.6 72.6

MUSER (PT+FT) 89.5 43.0 82.5
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MUSER with better few-shot ability
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Figure 2 Comparisons of fine-tuning efficiency on % ratio of
training samples for different downstream tasks, with only
FMA-small dataset for pre-training. Our MUSER uses less pre-training data to
have better few-shot performance
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Conclusion

MUSER only requires 0.056% of pre-training data to achieve the state-of-the-art
performance, and it has excellent few-shot performance.

We are the first to introduce text supervision for exploring the fine-grained feature of
distributed songs by designing text templates.

We add a music spectrogram encoder to the CLIP-style framework. It enables the
MUSER encoders to learn music from different views.
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