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Task: Recognition with partial observations. Dataset: AR dataset
Comparisons: MKD-SRC (feature based [4]); SDL with the same initialization.
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The noiseless case Conclusions & References
* Alternating Alignment and Sparse Coding Procedure (AASP) |A] = rank (D) in general cases; I

For test data y, , seek the best alignment A, among the set of all |A] = O(slogn) the lower bound will become sharper if Compressed Lo
hypothesis S as well as sparse representation x, (y;, D,) Sensing assumptions in [3] is satisfied * Performance limit is analyzed based on exact recovery.
L I Ex ’ ¢ Our method is robust especially in the case of severe information missing.
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