

REGULARIZED LATENT SPACE EXPLORATION FOR DISCRIMINATIVE FACE SUPER-RESOLUTION Ruixin Shi, Junzheng Zhang, Yong Li, Shiming Ge

Motivation

- Recent self-supervised super-resolution approaches usually have poor control over appearance and the super-resolved faces may look unnatural.
- Our approach regularizes the generation by considering both appearance and semantics in latent space exploration.

iteration = 100

Framework

Our approach fully uses a pretrained GAN in an online latent space exploration manner.

- During iteration, the generator *G* continually generates superresolution faces \widetilde{Y} from a random initialized latent code $z^{(1)}$.
- The generation is evaluated by measuring the *discriminator semantic* \bullet loss as well as *pixel loss* between x and $\tilde{y} \downarrow_s$.
- The exploration is regularized by the total loss to get the \bullet discriminative result \widetilde{y}^* .

Institute of Information Engineering, Chinese Academy of Sciences

Table 1. Comparison with other super-resolution approaches based on unsupervised (left							
Scale	Dataset	Metric	Bilinear	mGANprior [18]	PULSE [15]	Ours	VDSR
$8 \times$	CelebA	PSNR↑	25.84	21.29	22.54	23.52	23.18
		SSIM↑	0.73	0.53	0.54	0.56	0.76
		LPIPS↓	0.57	0.32	0.28	0.25	0.28
	TinyFace	NIQE↓	15.01	13.28	9.81	8.94	15.12
$16 \times$	CelebA	PSNR↑	22.73	20.53	21.43	21.74	22.42
		SSIM↑	0.56	0.50	0.48	0.49	0.59
		LPIPS↓	0.65	0.36	0.30	0.27	0.33
	TinyFace	NIQE↓	18.44	14.55	11.98	10.55	16.95

Effects of discriminator semantic loss:

Table 2. Effects of discriminator semantic log						
Scale	Metric	Without \mathcal{L}_s	With \mathcal{L}_s	Impr		
	PSNR↑	22.66	23.04			
$16 \times$	SSIM↑	0.54	0.55			
	LPIPS↓	0.24	0.20			
	PSNR↑	19.93	20.78			
$32\times$	SSIM↑	0.42	0.44			
	LPIPS↓	0.27	0.24			
	PSNR↑	18.93	19.15			
$64 \times$	SSIM↑	0.33	0.34			
	LPIPS↓	0.30	0.29			
		•				

Summary

- ullet
- especially on few-sample scenario.

Comparison with other super-resolution approaches including unsupervised and super

Infere

We study the control ability of generative models over face appearance and propose a regularized latent space exploration approach by fully using the pretrained GAN to control the exploration of face generation in an iterative optimization manner. We introduce a semantic loss measured by the discriminator feature differences between the input low-resolution face and the downsampled super-resolution one to achieve appearance natural and semantic discriminative super-resolution results. We conduct extensive experiments to validate the effectiveness of our approach in terms of quantitative metric and visual quality,

vised ones:							
t) and supervised learning (right).							
[6]	ESRGAN [13]	FSRNet [11]					
3	23.74	25.08					
	0.63	0.56					
	0.30	0.23					
2	16.84	16.53					
2	21.83	23.04					
	0.46	0.62					
	0.31	0.28					
5	15.64	15.90					
K							
	ESRGAN	FSRNet					
ence time of unsupervised approaches							
21.43							