i \,

Causal Alignment Based Fault
Root Causes Localization for
Wireless Network

8 Authors: Yuequn Liu, Wenhui Zhu, Jie Qiao, Zhiyi Huang, Yu Xiang, Xuanzhi Chen, Wei Chen, Ruichu Cai




h "\,

®©@6 6 O

Part | Part Il Part lll Part IV
Background Methodology Practice Conclusion




Background

DN



ty)
Localizing the root cause of network faults WoW W R
is crucial to operation and maintenance. \«» h l / [
___W/ A\W/ K— a \“ — o
Resorting to data analysis and machine & »/ @“A”/ n \» / y Z
learning is promising but remains difficult. | \ l \ A l \ l \
() () () () )
A ( A ((A GA»»
/« X\ \ 1« )

Root causes prediction

Design a root cause location model to
Real-world
telecommunication
dataset

quickly locate faults.

Suitable for Help Al

different domain operation and . . .
UL R dataset maintenance Offline Model Training

Learn root causes



Methodology

DN



Why CARCL Is Needed \’

» Though supervised methods have shown promising results in training samples, most of the
existing approaches assume that the training and the testing samples are independent and
identical distributed.

» Such an i.i.d assumption usually does not hold due to network faults that may occur in
different devices across different domains (well known as the ).

» Thus, it is necessary to
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cause cause cause
(a) Training distribution (b) Test distribution (c) Aligned training distribution

Figure: lllustrative example of the causal alignment.



Introduction of CARCL <

Causal | -’ Aligned Training l a Causal Alig nment
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on the complete variable set.
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e Pseudo label 1 @ Multi-stage Classifier
Classifier >
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2 {iifors help of predicted pseudo labels.
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Solution Introduction - CARCL
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» Causal alignment module:
> Measure the distribution difference between the training set and the test set
> Filter the training set data so that the causal mechanism reflected by the distribution of the
remaining data is similar to the test set data
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use the Bayesian network-based method to classifyl
. the test data set into fault and fault-free parts. I
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Solution Introduction - CARCL
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» Multi-stage classification module:

> multi-layer classifier module based on pseudo label is used to improve the classification

accuracy of the model.

classifier: the inputis |
the output of the causal |
alignment module and |
the original label. The |
output is the prediction |
label on the test setas |
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2. Start with the second
layer: test data and the
previous layer of pseudo
tags as input. The
output is the prediction

\ label of the test data.
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,’Including but not limited \
to:

1. XGBoost, LightGBM,
CatBoost and other
classifiers based on
decision tree

2. Classifier with k-
nearest neighbor as
reference data

3. Classifier based on
Bayesian network

4. Mixed use of multiple
\ Elassifiers
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Data set

» The experimental data set is a 5G wireless network data set published by ICASSP-SPGC-2022 communication
network intelligent operation and maintenance competition. The address is https://www.aiops.sribd.cn/home/data ,
The purpose of the competition is to deepen the understanding, research and application of such complex practical

network fault root cause inference. This public data set consists of three parts:

> Causal relationship graph. In this data set, the sponsor provided a causal relationship graph (desensitized) drawn by experts as a priori.
» Training data set. A total of 2984 samples are included. Each sample is a time segment (with variable length) from different 5G road test scenes,

which contains the information of 23 observable characteristic variables changing with time in this time segment.
» Test data set, the variable characteristics correspond to the training data set one by one, including 600 samples.
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@) Experiment

Algorithms ALL Ch(R;) Ch(R)
k-NN 0.566111  0.472222 0.566111
CatBoost 0.644722  0.642500 0.625277
Naive-Bayes -0.018333  0.409999 -0.001111
CARCL-NCA | 0.662499  0.675555 0.651944
CARCL-NM | 0.901388  0.835278 0.910555
CARCL-L 0.627222  0.643055 0.607222
CARCL 0.922778  0.869167 0.931945
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@) Case study
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(c) Aligned training distribution

Figure: Case study on root cause 1, in which the label in test distribution
are obtained by the prediction of CARCL.




Conclusion

N \



. @) conclusion \“\v{

» We propose a root causes location framework based on causal alignment.

» Differ from previous methods, we consider the different distribution of data in
training data set and test data set, and conduct the causal alignment processing
according to the causal mechanism.

» The excellent performance of the proposed method provides an effective solution for
fault root causes localization.

» Furthermore, it guides the future work of root causes localization methods based on
the causal alignment.
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