EXPLORING TRANSFERABILITY MEASURES AND DOMAIN SELECTION IN CROSS-DOMAIN SLOT FILLING

Xin-Chun Li, Yan-Jia Wang, Le Gan, De-Chuan Zhan

Contact Information: {lixc, zhandc}@lamda.nju.edu.cn **Code Repository:** https://github.com/lxcnju/CDSF-Transferability

Background

Definition of slot filling:

- Slot filling aims to identify the contiguous spans of specific slots in an utterance.
- Slot filling usually co-occurs with intent detection [1].
- Slot filling is fundamental to natural language understanding.

Transfer Learning:

Transfer learning utilizes the knowledge obtained from the source domain to facilitate the learning process of the target domain.

Cross Domain Slot Filling:

In real-world applications, the labeling costs of utterances may be expensive, and transfer learning techniques have been developed to ease this problem. However, cross-domain slot filling could significantly suffer from *negative transfer* due to *non-targeted* or *zero-shot* slots.

Slot Types of AddToPlaylist (ATP) (Source Domain):[Artist][Entity Name][Music Item][Playlist][Playlist Owner]

Slot Types of PlayMusic (PM) (Target Domain):

Domain	Domain	[<i>Album</i>] [Artist]
Using transfer learning can s	save training time, decrease	in st Gat. Des. Trem. ntry
labelling cost and promote m	nodel performance.	Con Sec. A Res.

Album] [Artist] [Genre] [Music Item] [Playlist] [Service] [Sort] [Track] [Year]

Domain Transferability Measures in CDSF										
DT-CDP: Measuring Domain Transferability (DT) via Cross-Domain Performance (CDP)	DT-STM: Measuring Domain Transferability (DT) via Slot Transferability Measure (STM)	DT-SDD: Measuring Domain Transferability (DT) via Slot Distribution Discrepancy (SDD)	DT-SSN: Measuring Domain Transferability (DT) via Shared Slot Number (SSN)							
$\operatorname{Trf}(S \to T) = F1_{x,y \sim \mathcal{T}_{xy}}(y, x; \theta_S)$ $\stackrel{\stackrel{\stackrel{\scriptstyle}}{}}{} \underbrace{\stackrel{\scriptstyle}{}}{} \underbrace{\stackrel}{} \underbrace{\stackrel}{} \underbrace{\stackrel}{} \underbrace{\stackrel}{}}{} \underbrace{\stackrel}{} \underbrace{} \underbrace{\stackrel}{} \underbrace{} \underbrace{} \underbrace{\stackrel}{} \underbrace{} \underbrace{\stackrel}{} \underbrace{\stackrel}{} \underbrace{} \underbrace{\stackrel}{} \underbrace{} \underbrace{} \underbrace{} \underbrace{} \underbrace{\stackrel}{} \underbrace{} $	Calculate STM: Step 1: collect slot value/context representations Ω_{v*} and Ω_{c*} Step 2: calculate value/context MMD $d_v = MMD(\Omega_{vs}, \Omega_{vt}) d_c = MMD(\Omega_{cs}, \Omega_{ct})$	Calculate SDD: Step 1: obtain source and target slot distribution P_S and P_T $P_{\star,i} = \frac{\#s_i}{\sum_j \#s_j}, \star \in \{S,T\}$	Slot Types of AddToPlaylist (ATP) (Source Domain): [Artist] [Entity Name] [Music Item] [Playlist] [Playlist] [Playlist Owner]Slot Types of PlayMusic (PM) (Target Domain): [Album] [Artist] [Genre] [Music Item] [Playlist] [Service] [Sort] [Track] [Year]SSN of ATP and PM is3SSN of ATP and PM is3Calculate SSN: Step 1: obtain source and target types $ATP = 5 0 0 3 0 0 0$ BR $0 14 5 1 0 0 2$ GW $0 5 9 0 0 0 0 2$							
PM 56.0 6.3 12.6 84.7 11.7 13.8 2.0 PM 57.2 17.2 9.8 88.0 15.8 25.1 11.8 RB 5.5 1.5 6.2 10.1 96.3 32.3 4.7 RB 7.3 11.6 6.3 12.3 96.9 35.9 5.5 SCW 9.1 1.3 3.8 7.8 15.1 88.0 8.3 SCW 19.1 4.3 2.5 8.1 16.6 89.0 10.2 5.5 SSE 5.2 8.9 19.9 12.7 7.1 21.1 93.0 SSE 8.2 11.3 14.8 4.5 9.1 24.8 94.6 94.6 (a) DT-CDP (Coarse) [0.811 w.(b)] (b) DT-CDP (Coach) [0.811 w.(a)] (c) BUT-CDP (Coach) [0.811 w.(a)] (c) BUT-CDP (Coach) [0.811 w.(a)]	Step 3: transferability among slots $STM(s,t) = 1.0 - \tanh\left(\frac{(1+\beta^2)d_vd_c}{\beta^2d_v+d_c}\right)$ Step 4: transferability among domains $Trf(S,T) = \max_{C\geq 0} \sum_{i,j} C_{i,j}STM(i,j)$. $s.t. \sum_{j=1}^{n} C_{ij} = \frac{1}{m}, \sum_{i=1}^{m} C_{ij} = \frac{1}{n}$.	$\begin{array}{l} \sum_{j=1}^{N} \sum_{j=1}^{N}$	$C_{S} = \{s_{i}\}_{i=1}^{m} \text{ and } C_{T} = \{t_{j}\}_{j=1}^{n}$ $Step 2: \text{ calculate SSN}$ $Trf(S,T) = C_{S} \cap C_{T} $ $C_{S} = \{s_{i}\}_{i=1}^{m} \text{ and } C_{T} = \{t_{j}\}_{j=1}^{n}$ $C_{T} = C_{S} \cap C_{T} $ $C_{S} = \{s_{i}\}_{i=1}^{m} \text{ and } C_{T} = \{t_{j}\}_{j=1}^{n}$ $C_{T} = C_{S} \cap C_{T} $ $C_{T} = C_{T} \cap C_{T} \cap C_{T} $ $C_{T} = C_{T} \cap C_{T}$							

The *Spearman* correlation between Coarse and Coach CDPs is 0.811.

The *Spearman* correlation with two types of CDPs is 0.735 and 0.642.

The *Spearman* correlation with two types of CDPs is 0.757 and 0.666.

The *Spearman* correlation with two types of CDPs is 0.801 and 0.730.

Benefits of DT-SSN

Metric: Slot F1 Scores

Slot Filling Architectures:

Two types of Slot Filling (SF) methods. Coarse SF solves slot filling via end-to-end sequence labeling, while Coach SF decomposes this process into two stages.

CDSF SOTA Results via Domain Selection:

Coach-k: for a target domain, select top-k source domains via SSN, then train a model on these domains' data and transfer this model to the target domain **Compared SOTA Methods**: CT, RZT, Coach, Coach-TR, CZSL-A, STM

	CT [3]	RZT [11]	Coach [4]	Coach-TR [4]	CZSL-A [7]	STM [17]	Coach-1	Coach-3
ATP	38.82	42.77	45.23	50.90	53.89	50.54	57.22	54.81
BR	27.54	30.68	33.45	34.01	34.06	32.89	39.40	38.92
GW	46.45	50.28	47.93	50.47	52.24	62.38	53.55	51.97
PM	32.86	33.12	28.89	32.01	34.59	34.45	36.95	39.27
RB	14.54	16.43	25.67	22.06	31.53	25.39	16.63	18.26
SCW	39.79	44.45	43.91	46.65	50.61	52.21	35.86	53.88
FSE	13.83	12.25	25.64	25.63	30.05	26.05	29.07	31.31
Avg	30.55	32.85	35.82	37.39	40.99	40.56	38.38	41.20

Coach-TR and CZSL-A introduces additional techniques to enhance model performances. However, our methods does not introduce any complex training techniques and could still obtain SOTA results.

Benefits of DT-SSN

Dynamic Transfer: Step 1: for a target domain, sort the source domains via SSN

Step 2: train models via sequentially adding source domains, record the transfer performance

Right Figure: The dynamic transfer results based on Coach SF. Each plot shows a target domain. The last shows the average results.

The F1 scores continually decrease on most domains when non-overlapped domains (solid yellow bars) are continually added.

Conclusion

- We explore several domain transferability measures in CDSF.
- Shared Slot Number (SSN) is a frustratingly easy domain transferability measure.
- We clearly show the negative transfer phenomenon in CDSF.
- Based on SSN, we propose to use this estimator to select domains and obtain SOTA results on Snips.