ICASSP 2022

RECOVERY OF GRAPH SIGNALS FROM SIGN MEASUREMENTS

Authors: Wenwei Liu, Hui Feng, Kaixuan Wang, Feng Ji, Bo Hu

Reporter: Wenwei Liu

School of Information Science and Technology, Fudan University

Paper ID: 2748

This work was supported by CURE (Hui-Chun Chin and Tsung-Dao Lee Chinese Undergraduate Research

Endowment) (19930), and National University Student Innovation Program (201910246154).

DIGITAL SIGNAL PROCESSING & TRANSMISSION LAB

Authors

Wenwei Liu¹

Hui Feng^{1,2}

Kaixuan Wang¹

Ji Feng³

Bo Hu^{1,2}

Institution :

- 1 School of Information Science and Technology, Fudan University, Shanghai 200433, China
- 2 Shanghai Institute of Intelligent Electronics & Systems, Shanghai 200433, China
- 3 School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore

Email:

{wwliu21,kaixuanwang21}@m.fudan.edu.cn, {hfeng, bohu}@fudan.edu.cn, jifeng@ntu.edu.sg

Content

Introduction

■Model

Reconstruction Algorithm

Design of Sampling Set

Experiments

Introduction

Graph Signals: data on an irregular topology

□Social networks, sensor networks, ...

Graph Signal Processing (GSP)

Semantic segmentation, traffic prediction, ...

Graph Fourier Transform (GFT)

- Vertex domain → Frequency domain
- Graph signals in life tend to be smooth
 - Signal values on adjacent vertices are similar
 - \Leftrightarrow Bandlimited in frequency domain
 - E.g. Temperature measured by 150 weather stations across the United States on February 1, 2003. [1]

Introduction

Observing a graph signal may face

□Not all the vertices can be observed

• Enormous data scale, limited sampling budget, ...

Only some simple quantized values are available

• E.g. Rating system: no specific scores, but simple evaluations ("like", "dislike", "indifference")

Sign information: $\{1, -1, 0\}$

The signal value exceeds a threshold or not

Our focus!

DIGITAL SIGNAL PROCESSING & TRANSMISSION LAB

Introduction

Our research

Recover the original bandlimited signal from the sign information of partial samples

Reconstruction algorithm + Sampling scheme

$\square \mathcal{V}: \text{ set of vertices, } |\mathcal{V}| = N$

Model

 $\Box \mathcal{E}: \text{set of edges}$

□*W*: weighted adjacency matrix

• $W_{ij} = W_{ji} > 0$ if $(i, j) \in \mathcal{E}$, $W_{ij} = 0$ otherwise

Undirected Connected Graph: $\mathcal{G} = \{\mathcal{V}, \mathcal{E}, W\}$

- Graph Signal $x : \mathcal{V} \mapsto \mathbb{R}$
- Graph Laplacian: L = D W

\BoxReal symmetric, positive semidefinite, $L = U\Lambda U^T$

- Eigenvalues: $0 = \lambda_1 \le \lambda_2 \le \dots \le \lambda_N$, $\Lambda = \text{diag}(\lambda_1, \lambda_2, \dots, \lambda_N)$
- Eigenvectors: $\boldsymbol{U} = [\boldsymbol{u}_1, \boldsymbol{u}_2, \dots \boldsymbol{u}_N]$

Model

Bandlimited in frequency domain

$$\Box \text{ GFT: } \widehat{x} = U^T x \ (\mathbb{R}^N \mapsto \mathbb{R}^N)$$

□ Bandlimited: $\hat{x}_k \neq 0$ for $f_L \leq k \leq f_U$, and $\hat{x}_k = 0$ otherwise.

Sign Measurement

$$\Box s_{x} = \operatorname{sign}(\boldsymbol{\psi}_{v}\boldsymbol{x})$$

•
$$\mathbb{R}^N \mapsto \{-1,1,0\}^M (M \leq N)$$

• sampling matrix $\boldsymbol{\psi}_{v} \in \mathbb{R}^{M \times N} \Rightarrow$ signal values on \mathcal{V}' (a subset of \mathcal{V})

• sign(x) =
$$\begin{cases} -1 & x < 0\\ 1 & x > 0\\ 0 & \text{otherwise} \end{cases}$$

• we assume
$$||\mathbf{x}|| = 1$$

Reconstruction Algorithm

Suppose our recovery signal is x^* , the original signal x has passband f_L , ..., f_U and bandwidth $B = f_U - f_L + 1$

Consistence: sign($\psi_v x^*$) = s_x

- For i = 1, 2, ..., M, $(\psi_v)_i x^* > 0 (< 0, = 0)$ according to $(s_x)_i$
- Constraint space:

$$C_{s} = \bigcap_{i=1}^{M} \{ \boldsymbol{\omega} \in \mathbb{R}^{N} | (\boldsymbol{\psi}_{v})_{i} \boldsymbol{\omega} > 0 (< 0, = 0) \}$$

DBandlimited: x^* has the same passband as x

• For
$$i = f_L, ..., f_U$$
, $\boldsymbol{u}_i^T \boldsymbol{x}^* = 0$

• Constraint space:

$$C_b = \left\{ \boldsymbol{\omega} \in \mathbb{R}^N | \boldsymbol{u}_i^T \boldsymbol{\omega} = 0, i = f_L, \dots, f_U \right\}$$

Reconstruction Algorithm

Projection operators

D Projecting on C_v (the close convex hull of C_s)

• Relaxation:
$$C_v = \bigcap_{i=1}^M \{ \boldsymbol{\omega} \in \mathbb{R}^N | (\boldsymbol{\psi}_v)_i \boldsymbol{\omega} \ge 0 (\le 0, = 0) \}$$

•
$$(\mathbf{P}_{v}\boldsymbol{\omega})_{j} = \begin{cases} 0 \quad j \in \mathcal{V}', \operatorname{sign}(\omega_{j}) \neq (\mathbf{s}_{x})_{i} \\ \omega_{j} & \text{otherwise} \end{cases}$$

• A 2D example, sign information: $x_2 > 0$

DProjecting on C_b

•
$$P_b = U\Gamma U^T$$
: A bandpass filter

Reconstruction Algorithm

Continuously projecting onto the convex sets (POCS) [2]

Denote *C* as the feasible region, i.e. $C = C_b \cap C_v$

Iterative process : $\boldsymbol{x}_{n+1} = \boldsymbol{P}_b \boldsymbol{P}_v \boldsymbol{x}_n$

Convergence Analysis [3]

- 1. The iterative sequence $\{x_n\}$ converges to some point x^* in *C*
- 2. The convergence rate is independent of the selection of the initial point x_0

- Goal: Find a sampling set so that x^* is closer to x
 - \Rightarrow Find a sampling set that makes *C* smaller
 - \succ *C* (*C*_v) is decided by ψ_v
 - > Different *C* may lead to different x^*

Feasible Region Analysis

Denote $U_B = [u_{f_L}, ..., u_{f_U}]$, sampling set $S = \{S(1), ..., S(M)\}$. Define

Any vector in *C* has a one - to - one correspondence in \hat{C}

□ For any signals $\boldsymbol{\beta}_1$, $\boldsymbol{\beta}_2$ in *C* with coordinates $\boldsymbol{\alpha}_1$, $\boldsymbol{\alpha}_2$ under \boldsymbol{U}_B , then $\langle \boldsymbol{\beta}_1, \boldsymbol{\beta}_2 \rangle = \langle \boldsymbol{U}_B \boldsymbol{\alpha}_1, \boldsymbol{U}_B \boldsymbol{\alpha}_2 \rangle = \langle \boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2 \rangle$

- Feasible Region Analysis
 - $\square \hat{C} \text{ is a closed convex cone}$
 - Any vector in \hat{C} can be represented linearly by extreme vectors (EVs) with non-negative coefficients [4].

$$\hat{C} = \left\{ \sum_{i=1}^{r} k_i \boldsymbol{\varphi}_i \ \middle| \ k_i \ge 0 \ (i, 1, 2, \dots r) \right\}$$

• $\mathcal{Z} = \{ \boldsymbol{\varphi}_i \}_{i=1}^r$ (normalized) are called extreme vectors

■ The size metric of
$$\hat{C}$$

 $\theta = \max_{\boldsymbol{\gamma}, \boldsymbol{\mu} \in \mathcal{Z}} \arccos \langle \boldsymbol{\gamma}, \boldsymbol{\mu} \rangle$

- Sampling process
 - \square sampling \Leftrightarrow adding constraints
 - \square select ξ as the next sample:
 - $\hat{\mathcal{C}} \rightarrow \hat{\mathcal{C}} \cap \left\{ \boldsymbol{\alpha} \in \mathbb{R}^{B} | (\boldsymbol{U}_{B})_{\xi} \boldsymbol{\alpha} \geq 0 (\leq 0, = 0) \right\}$
 - Divide \hat{C} by hyperplane $\{ \boldsymbol{\alpha} \in \mathbb{R}^B | (\boldsymbol{U}_B)_{\xi} \boldsymbol{\alpha} = 0 \}$
- Brute Force Approach
 - □ calculate the EVs for every unsampled vertex
 - \square calculate θ and determine the smallest one

Unbearable Complexity !!

15

Greedy Sampling

- 1. Find the "valid" vertices
 - Valid: the corresponding hyperplane separates the EV pair associated with θ.
 - Example: (A,D) is the target EV pair

Greedy Sampling

2. Among all the valid vertices, calculate the **distances** of EVs

$$d_j = \sum_{\boldsymbol{\gamma} \in \mathcal{Z}} \frac{(\boldsymbol{U}_B)_j \boldsymbol{\gamma}}{\|(\boldsymbol{U}_B)_j\|}$$

3. Next sample ξ :

 $\xi = \operatorname{argmin}_{j} \left| d_{j} \right|$

To make the feasible region roughly "cut" in half.

Experiments

Performance on a sensor graph

- Procedure
- 1. Obtain the greedy sampling set and 50 random sampling sets.
- 2. Arbitrarily select 50 initial points.
- 3. Recover the signal from the initial points on each sampling set.

Evaluation criterion

$$\delta = \frac{1}{50} \sum_{i=1}^{50} \arccos \langle \mathbf{x}, \mathbf{x}_i^* \rangle$$

• x_i^* stands for the normalized recovery signal of the *i*th initial signal.

• The larger δ is, the worse the recovery is.

Experiments

Performance on a sensor graph

Parameters

Vertices N	Edges E	Lower bound f_L	Upper bound f_U
40	153	29	35

0.4

0.3

0.2

0.1

0

-0.1

-0.2

-0.3

a graph signal with unit norm

its sign information

Experiments

Performance on a sensor graph

Reference

- 1. Sandryhaila A, Moura J M F. Discrete signal processing on graphs: Frequency analysis[J]. IEEE Transactions on Signal Processing, 2014, 62(12): 3042-3054.
- Heinz H Bauschke and Jonathan M Borwein, "On projection algorithms for solving convex feasibility problems,"SIAM review, vol. 38, no. 3, pp. 367–426, 1996.
- Wenwei Liu, Hui Feng, Kaixuan Wang, Feng Ji, and Bo Hu, "Recovery of graph signals from sign measurements," arXiv preprint arXiv:2109.12576, 2021.
- 4. George Phillip Barker, "The lattice of faces of a finite dimensional cone," Linear Algebra and its Applications, vol. 7, no. 1, pp. 71–82, 1973.

ICASSP 2022

Thank you

DIGITAL SIGNAL PROCESSING & TRANSMISSION LAB