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◼Graph Signals: data on an irregular topology

Social networks, sensor networks, …

◼ Graph Signal Processing (GSP)

Semantic segmentation, traffic prediction, …

Graph Fourier Transform (GFT)

⚫ Vertex domain → Frequency domain

Graph signals in life tend to be smooth

⚫ Signal values on adjacent vertices are similar 

⇔ Bandlimited in frequency domain

⚫ E.g. Temperature measured by 150 weather stations across the United 
States on February 1, 2003. [1]

Introduction
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◼Observing a graph signal may face

Not all the vertices can be observed

⚫ Enormous data scale, limited sampling budget, …

Only some simple quantized values are available 

⚫ E.g. Rating system: no specific scores, but simple evaluations 
(“like”,“dislike”, “indifference”)

Introduction

Sign information: 1,−1,0

The signal value exceeds a threshold or not

Our focus!
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◼Our research

 Recover the original bandlimited signal from the sign information 
of partial samples

Reconstruction algorithm + Sampling scheme

Introduction

Sampling on vertex domain
+

Sign Operator

Recover
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◼Undirected Connected Graph: 𝒢 = 𝒱, ℰ,𝑾

𝒱: set of vertices, 𝒱 = 𝑁

ℰ: set of edges

𝑾: weighted adjacency matrix

⚫𝑊𝑖𝑗 = 𝑊𝑗𝑖 > 0 if 𝑖, 𝑗 ∈ ℰ, 𝑊𝑖𝑗 = 0 otherwise

◼Graph Signal 𝒙 ∶ 𝒱 ⟼ ℝ

◼Graph Laplacian: 𝑳 = 𝑫 −𝑾

Real symmetric, positive semidefinite, 𝑳 = 𝑼𝚲𝑼𝑇

⚫ Eigenvalues: 0 = 𝜆1 ≤ 𝜆2 ≤ ⋯ ≤ 𝜆𝑁, 𝚲 = diag 𝜆1, 𝜆2, … , 𝜆𝑁

⚫ Eigenvectors: 𝑼 = 𝒖1, 𝒖2, …𝒖𝑁

Model
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◼Bandlimited in frequency domain

 GFT: ෝ𝒙 = 𝑼𝑇𝒙 (ℝ𝑁 ⟼ℝ𝑁)

 Bandlimited: ෝ𝒙𝑘 ≠ 0 for 𝑓𝐿 ≤ 𝑘 ≤ 𝑓𝑈, and ෝ𝒙𝑘 = 0 otherwise. 

◼Sign Measurement

 𝒔𝑥 = sign 𝝍𝑣𝒙

⚫ ℝ𝑁 ⟼ {−1,1,0}𝑀(𝑀 ≤ 𝑁)

⚫ sampling matrix 𝝍𝑣 ∈ ℝ
𝑀×𝑁 ⇒ signal values on 𝒱′ (a subset of 𝒱)

⚫ sign 𝑥 = ቐ
−1 𝑥 < 0
1 𝑥 > 0
0 otherwise

⚫ we assume 𝒙 = 1

Model
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Suppose our recovery signal is 𝒙∗, the original signal 𝒙 has 
passband 𝑓𝐿 , … , 𝑓𝑈 and bandwidth 𝐵 = 𝑓𝑈 − 𝑓𝐿 + 1

Consistence: sign 𝝍𝑣𝒙
∗ = 𝒔𝑥

⚫ For 𝑖 = 1,2, . . , 𝑀,  𝝍𝑣 𝑖𝒙
∗ > 0(< 0,= 0) according to 𝒔𝑥 𝑖

⚫ Constraint space:

𝐶𝑠 =ሩ

𝑖=1

𝑀

𝝎 ∈ ℝ𝑁| 𝝍𝑣 𝑖𝝎 > 0(< 0,= 0)

Bandlimited: 𝒙∗ has the same passband as 𝒙

⚫ For 𝑖 = 𝑓𝐿, … , 𝑓𝑈 , 𝒖𝑖
𝑇𝒙∗ = 0

⚫ Constraint space:

𝐶𝑏 = 𝝎 ∈ ℝ𝑁|𝒖𝑖
𝑇𝝎 = 0, 𝑖 = 𝑓𝐿, … , 𝑓𝑈

Reconstruction Algorithm
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◼ Projection operators

 Projecting on 𝐶𝑣 (the close convex hull of 𝐶𝑠)

⚫ Relaxation: 𝐶𝑣 = 𝑖=1ځ
𝑀 𝝎 ∈ ℝ𝑁| 𝝍𝑣 𝑖𝝎 ≥ 0(≤ 0,= 0)

⚫ 𝑷𝑣𝝎 𝑗 = ൝
0 𝑗 ∈ 𝒱′, sign(𝜔𝑗) ≠ 𝒔𝑥 𝑖

𝜔𝑗 otherwise

⚫ A 2D example, sign information: 𝑥2 > 0

Projecting on 𝐶𝑏

⚫ 𝑷𝑏 = 𝑼𝜞𝑼𝑇: A bandpass filter  

Reconstruction Algorithm

𝑥1

𝑥2

𝑂
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◼ Continuously projecting onto the convex sets (POCS) [2]

Denote 𝐶 as the feasible region, i.e. 𝐶 = 𝐶𝑏 ∩ 𝐶𝑣

Iterative process : 𝒙𝑛+1 = 𝑷𝑏𝑷𝑣𝒙𝑛

◼ Convergence Analysis [3]

1. The iterative sequence 𝒙𝑛 converges to some point 𝒙∗ in 𝐶

2. The convergence rate is independent of the selection of the initial 
point 𝒙0

Reconstruction Algorithm

𝐶𝑣

𝐶𝑏

𝐶
𝒙0

𝒙1
𝒙2

…
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◼ Goal: Find a sampling set so that 𝒙∗ is closer to 𝒙

⇒ Find a sampling set that makes 𝐶 smaller

➢ 𝐶 (𝐶𝑣) is decided by 𝝍𝑣

➢ Different 𝐶 may lead to different 𝒙∗

We can modify the sampling set to adjust recovery quality !

Design of Sampling Set

Different 𝝍𝑣 Different 𝐶 Different 𝒙∗
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◼ Feasible Region Analysis

 Denote 𝑼𝐵 = 𝒖𝑓𝐿 , …𝒖𝑓𝑈 , sampling set 𝑆 = {𝑆 1 ,… 𝑆(𝑀)}. Define 

መ𝐶 =ሩ

𝑖=1

𝑀

𝜶 ∈ ℝ𝐵| 𝝍𝑣 𝑖𝑼𝐵𝜶 ≥ 0(≤ 0,= 0)

=ሩ

𝑖=1

𝑀

𝜶 ∈ ℝ𝐵| 𝑼𝐵 𝑆(𝑖)𝜶 ≥ 0(≤ 0,= 0)

Any vector in 𝐶 has a one - to - one correspondence in መ𝐶

 For any signals 𝜷1, 𝜷2 in 𝐶 with coordinates 𝜶1, 𝜶2 under 𝑼𝐵, then 
𝜷1, 𝜷2 = 𝑼𝐵𝜶1, 𝑼𝐵𝜶2 = 𝜶1, 𝜶2

Design of Sampling Set

መ𝐶𝐶

𝜷 𝜶
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◼ Feasible Region Analysis

 መ𝐶 is a closed convex cone

⚫ Any vector in መ𝐶 can be represented linearly by extreme vectors (EVs) 
with non-negative coefficients [4] . 

መ𝐶 = อ

𝑖=1

𝑟

𝑘𝑖𝝋𝑖 𝑘𝑖 ≥ 0 (𝑖, 1,2, … 𝑟)

⚫ 𝒵 = 𝝋𝑖 𝑖=1
𝑟 (normalized) are called extreme vectors

 The size metric of መ𝐶
𝜃 = max

𝜸,𝝁∈𝒵
arccos 𝜸, 𝝁

Design of Sampling Set

𝑂
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◼ Sampling process

 sampling ⇔ adding constraints

 select 𝜉as the next sample:

⚫ መ𝐶 ⟶ መ𝐶 ∩ 𝜶 ∈ ℝ𝐵| 𝑼𝐵 𝜉𝜶 ≥ 0(≤ 0,= 0)

⚫ Divide መ𝐶 by hyperplane 𝜶 ∈ ℝ𝐵| 𝑼𝐵 𝜉𝜶 = 0

◼ Brute Force Approach

 calculate the EVs for every unsampled vertex

 calculate 𝜃 and determine the smallest one

Unbearable Complexity !!

Design of Sampling Set

A

B

C

F

E

D𝐶1

𝐶2
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◼ Greedy Sampling

1. Find the “valid” vertices

⚫ Valid: the corresponding hyperplane separates the EV pair associated 
with 𝜃.

⚫ Example:  (A,D) is the target EV pair 

√ valid     × not valid

Design of Sampling Set

A

B

C

F

E

D
𝐶1

𝐶2
A

B

C

F

E

D

𝐶1

𝐶2A

B

C

F

E

D
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◼ Greedy Sampling

2. Among all the valid vertices, calculate the distances of EVs 

𝑑𝑗 = 

𝜸∈𝒵

𝑼𝐵 𝑗𝜸

𝑼𝐵 𝑗

3. Next sample 𝜉: 

𝜉 = argmin𝑗 𝑑𝑗

To make the feasible region roughly “cut” in half.

Example :

great                                   bad                                  

Design of Sampling Set

A

B

C

F

E

D
𝐶1

𝐶2 A

B

C

F

E

D

𝐶1

𝐶2
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◼ Performance on a sensor graph

 Procedure

1. Obtain the greedy sampling set and 50 random sampling sets.

2. Arbitrarily select 50 initial points.

3. Recover the signal from the initial points on each sampling set.

 Evaluation criterion

𝛿 =
1

50


𝑖=1

50

arccos 𝒙, 𝒙𝑖
∗

⚫ 𝒙𝑖
∗ stands for the normalized recovery signal of the 𝑖th initial signal.

⚫ The larger 𝛿 is, the worse the recovery is.

Experiments
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◼ Performance on a sensor graph

 Parameters

a graph signal with unit norm              its sign information

Experiments

Vertices 𝑁 Edges ℰ Lower bound 𝑓𝐿 Upper bound 𝑓𝑈

40 153 29 35
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◼ Performance on a sensor graph

Experiments

Average error for 50

random sampling sets

Average error for our

greedy sampling set

Average error when all
the vertices are sampled
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