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Intelligent voice assistants are,

- everywhere around us.
- awakened by specific speech keywords (KWS).
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Background: Voice Assistants/Word Spotting (KWS) & ;nd;e;e;jin

Where Marketers are Deploying Voice Capabilities to Engage Customers [1]

. Go ahead, I'm listening
m \
_ . 52.8% 49.1% %

®

Alexa Siri Google Now Mobile app Mobile app Embedded
i0S Android in our product @ volcebot.al
Intelligent voice assistants are, .
Limited
- everywhere around us. Computational
Resource.

- awakened by specific speech keywords.
- mostly deployed in edge/mobile devices.

[1] https://voicebot.ai/2021/03/29/where-custom-voice-assistants-are-deployed-in-2021/
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Where Marketers are Deploying Voice Capabilities to Engage Customers [1]

. ‘ Go ahead, I'm listening
_ 52.8% 49.1% %

Alexa Siri Google Now

Mobile app Mobile app Embedded
i0S Android in our product @ volachot=d
Limited vocabularies in KWS models. Limited
Computational
_ Resource

Cannot deal with unknown words
without a large pre-trained model.

(small memory, slow
training speed, etc).

[1] https://voicebot.ai/2021/03/29/where-custom-voice-assistants-are-deployed-in-2021/
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Related Works: Continual Learning A

Continual Learning Methods
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Regularization-based Methods Replay Methods
- Elastic Weight Consolidation (EWC) [3] - Naive Rehearsal
- Synaptic Intelligence (SI) [4] - Gradient Episodic Memory (GEM) [5]

[3] https://arxiv.org/abs/1612.00796 (James Kirkpatrick et al, Overcoming catastrophic forgetting in neural networks; PNAS'17)
[4] https://arxiv.org/abs/1703.04200 (Friedemann Zenke et al, Continual Learning Through Synaptic Intelligence; ICML'17)
[5] https://arxiv.org/abs/1706.08840 (David Lopez-Paz et al, Gradient Episodic Memory for Continual Learning; NeurIPS'17)
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Related Works: Fine-tuning

Fine-tuning the KWS model on unknow keywords

100

F1

20 A

[2]

Accuracy: 86.10 Avg-F1: 86.34
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(*even with a large speech pre-trained model)
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Learning new keywords sequentially

[2] https://arxiv.org/abs/2106.02443 (Awasthi et al, Teaching keyword spotters to spot new keywords with limited examples; InterSpeech’21)
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Related Works: Gaps QU e
Fine-tuning the KWS model on unknow keywords

[2]

- Accuracy: 86.10 Avg-F1- 86.34 limited the learning ability for more words.
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Learning new keywords sequentially

[2] https://arxiv.org/abs/2106.02443 (Awasthi et al, Teaching keyword spotters to spot new keywords with limited examples; InterSpeech’21)
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Progressive Continual Learning for KWS (PCL-KWS) g 55

Progressive model expanding
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Progressive Continual Learning for KWS (PCL-KWS) &

Progressive model expanding
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Progressive Continual Learning for KWS (PCL-KWS) &

Progressive model expanding
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Progressive Continual Learning for KWS (PCL-KWS) g &

Progressive model expanding
frozen while learning new keywords.
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Keyword-aware Network Scaling Mechanism
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Keyword-aware Network Scaling Mechanism
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Evaluation & Insights

Comapre with Continual Learning Baselines

ACC (%)
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Task Number

The overall accuracy (%) with the number of learned tasks (each
has 3 keywords from Google Speech Commands Dataset)

Stand-alone: separate model for
each task.

Fine-tune: without continual
learning.

from PCL-KWS:

1. nearupper-bound performance.
2. better than all CL baselines.



Evaluation & Insights

Comapre with Continual Learning Baselines

Fine-tune
(Lower-bound)

Regularization-based
(EWC, Sl)

Replay-based
(NR, GEM)

PCL-KWS
(Ours)

Stand-alone
(Upper-bound)

Accuracy
(average of all tasks)

0.39

0.45

0.73

0.91

0.94

Speed

(per-epoch training time)

109.2s

133.5s

506.9s

97 .4s

123.3s

Memory

(extra parameters + buffer size)

N.A

67.69K

132.4M

25.5K

617.8K

Regularization-based:

- High training speed.
- Low memory footprint.
- Poor accuracy.

Replay-based:

- Low training speed.
- High memory footprint.
- Good accuracy.

PCL-KWS:

- High training speed.
- Low memory footprint.
- Good accuracy.



Evaluation & Insights A =

Parameter Growth Rate of PCL-KWS
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Summary a

- Apply various continual learning methods for spoken keyword spotting incremental learning.

- Proposed PCL-KWS, a novel continual learning strategy designed for small-footprint KWS.

- Compare with regularization-based methods, PCL-KWS has better CL performance.
- Compare with replay-based methods, PCL-KWS has better system efficiency.

SSSSSSSSS

- Introduced a keyword-aware network scaling mechnichsm to reduce the parameter growth rate.
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