

Progressive Continual Learning for Spoken Keyword Spotting

Yizheng Huang*, Nana Hou^, Nancy F. Chen*

*Institute for Infocomm Research, A*STAR, Singapore ^Nanyang Technological University, Singapore

Background: Voice Assistants/Word Spotting (KWS)

Intelligent voice assistants are,

- **everywhere** around us.
- awakened by specific speech **keywords (KWS)**.

[1] https://voicebot.ai/2021/03/29/where-custom-voice-assistants-are-deployed-in-2021/

Background: Voice Assistants/Word Spotting (KWS) 🧷

Intelligent voice assistants are,

Cortana

everywhere around us.

Google Now

Alexa

Siri

- awakened by specific speech **keywords**. _
- mostly deployed in **edge/mobile** devices. _

Where Marketers are Deploying Voice Capabilities to Engage Customers

 (\mathbf{l})

[1] https://voicebot.ai/2021/03/29/where-custom-voice-assistants-are-deployed-in-2021/

Motivation

Siri

Google Now

Alexa

[1] Where Marketers are Deploying Voice Capabilities to Engage Customers

Limited vocabularies in KWS models.

Cortana

Go ahead, I'm listening

Cannot deal with unknown words without a large pre-trained model.

Limited Computational Resource

(small memory, slow training speed, etc).

Related Works: Continual Learning

Continual Learning Methods

Regularization-based Methods

- Elastic Weight Consolidation (EWC) [3]
- Synaptic Intelligence (SI) [4]

Replay Methods

- Naive Rehearsal
- Gradient Episodic Memory (GEM) [5]

[3] <u>https://arxiv.org/abs/1612.00796</u> (James Kirkpatrick et al, Overcoming catastrophic forgetting in neural networks; *PNAS'17*)
[4] <u>https://arxiv.org/abs/1703.04200</u> (Friedemann Zenke et al, Continual Learning Through Synaptic Intelligence; *ICML'17*)
[5] <u>https://arxiv.org/abs/1706.08840</u> (David Lopez-Paz et al, Gradient Episodic Memory for Continual Learning; *NeurIPS'17*)

Related Works: Fine-tuning

Fine-tuning the KWS model on unknow keywords

Learning new keywords sequentially

[2] https://arxiv.org/abs/2106.02443 (Awasthi et al, Teaching keyword spotters to spot new keywords with limited examples; InterSpeech'21)

Related Works: Gaps

Fine-tuning the KWS model on unknow keywords

Learning new keywords sequentially

[2] https://arxiv.org/abs/2106.02443 (Awasthi et al, Teaching keyword spotters to spot new keywords with limited examples; InterSpeech'21)

Progressive model expanding

Structure of PCL-KWS

Progressive model expanding

classification layers dedicated for each task (one or more keywords).

Progressive Continual Learning for KWS (PCL-KWS) 🗷 **Progressive model expanding** TASK 1 PCL-KWS yes, no hello, happy ... Sub-netwok 1 TASK 2 stop, right Features Sub-network 2 store the learned features of TASK 3 previously learned tasks. Sub-network 3 cat MFCC Shared Memory

Network Instantiator

Structure of PCL-KWS

Progressive model expanding

Structure of PCL-KWS

Keyword-aware Network Scaling Mechanism

Sub-netwok t

$$\{16, 24, 32, 48\} * \alpha_t$$

dynamic width multiplier

Structure of Sub-network

Keyword-aware Network Scaling Mechanism

Sub-netwok t

$$\{16, 24, 32, 48\} * \alpha_t$$

$$\alpha_t = \mu \frac{C_t}{C_0}, (\mu > 0)$$

dynamic width multiplier (factor)

determined by the new keyword numbers, and the pre-trained keywords.

Structure of Sub-network

Evaluation & Insights

Comapre with Continual Learning Baselines

The overall accuracy (%) with the number of learned tasks (each has 3 keywords from Google Speech Commands Dataset)

Stand-alone: separate model for each task.

Fine-tune: without continual learning.

from PCL-KWS:

- 1. near upper-bound performance.
- 2. better than all CL baselines.

Evaluation & Insights

Comapre with Continual Learning Baselines

	Accuracy (average of all tasks)	Speed (per-epoch training time)	Memory (extra parameters + buffer size)
Fine-tune (Lower-bound)	0.39	109.2s	N.A
Regularization-based (EWC, SI)	0.45	133.5s	67.69K
Replay-based (NR, GEM)	0.73	506.9s	132.4M
PCL-KWS (Ours)	0.91	97.4s	25.5K
Stand-alone (Upper-bound)	0.94	123.3s	617.8K

Agency for Science, Technology and Research SINGAPORE

Regularization-based:

- **High** training speed.
- **Low** memory footprint.
- **Poor** accuracy.

Replay-based:

- **Low** training speed.
- **High** memory footprint.
- Good accuracy.

PCL-KWS:

- High training speed.
- **Low** memory footprint.
- Good accuracy.

Evaluation & Insights

Parameter Growth Rate of PCL-KWS

- Apply various continual learning methods for spoken keyword spotting incremental learning.
- Proposed PCL-KWS, a novel continual learning strategy designed for small-footprint KWS.
 - Compare with regularization-based methods, PCL-KWS has better CL performance.
 - Compare with replay-based methods, PCL-KWS has better system efficiency.
- Introduced a keyword-aware network scaling mechnichsm to reduce the parameter growth rate.

Thanks