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Abstract

Sub-band models have achieved promising results due to their ability to model local patterns in the spectrogram. Some studies further improve the performance by fusing sub-band and full-band information. However, the structure for the full-band and sub-band fusion model was not fully explored. This paper proposes a dual-path
transformer-based full-band and sub-band fusion network (DPT-FSNet) for speech enhancement in the frequency domain. The intra and inter parts of the dual-path transformer model sub-band and full-band information, respectively. The features utilized by our proposed method are more interpretable than those utilized by the
time-domain dual-path transformer. We conducted experiments on the Voice Bank + DEMAND and Interspeech 2020 Deep Noise Suppression (DNS) datasets to evaluate the proposed method. Experimental results show that the proposed method outperforms the current state-of-the-art.

Motivations
Our model can be seen as a combination of ”full-band and sub-band” feature modeling and a dual-path structure.

1 ”Full-band and sub-band” feature modeling: Inspired by FullSubNet (Hao et al. 2021), we thought it would be helpful to use
full-band and sub-band feature modeling.

2 Dual-path structure: Recently, dual-path networks (Luo et al. 2020; Chen et al. 2020; Wang et al. 2021) have achieved
exceptional performance due to their ability to model local and global features of the input sequence.

3 A combination of the above two methods: Inspired by FullSubNet’s ”full-band and sub-band” feature modeling, we used a
dual-path structure suitable for modeling such features, in which the intra-transformer models sub-band information and the
inter-transformer merges the sub-band information from the intra-transformer to model the full-band information.

Framework

Our proposed model consists of an encoder, a dual-path transformer processing module (DPTPM), and a decoder.
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Figure 1. Architecture of the proposed DPT-FSNet. a) The overall diagram of the proposed method b) The detail of the dense block. c) The detail of the dual-path transformer. d) The detail of the
improved transformer.

Workflow

Encoder

The input to the encoder is the complex spectrum X ∈ R2×T×F , and the output is a high-dimensional representation U ∈ RC×T×F .

DPTPM
The intra-transformer processing block models the sub-band of the input features, which acts on the second dimension of D

Dintra
b = [f intra

b (Dinter
b−1 [:, :, i], i = 1, . . . , F )] (1)

The inter-transformer processing block is used to summarize the information from each sub-band of the intra-transformer output to learn the global information of the
speech signal, which acts on the last dimension of D

Dinter
b = [f inter

b (Dintra
b [:, j, :], j = 1, . . . , T )] (2)

Decoder

The feature from the DPTPM output is passed through the decoder to obtain the estimated complex ratio mask. The enhanced complex spectrum is obtained by the
element-wise multiplication between encoder’s input and the mask.

Results & Discussion

We use a small-scale (Voicebank+DEMAND) and a large-scale dataset (DNS dataset) to evaluate the proposed model.In both of the
above datasets, we compared our proposed algorithm with the current state-of-the-art, as shown in Tables 1 and 2.

Method WB-PESQ STOI CSIG CBAK COVL Para. (M)

Noisy 1.97 0.91 3.34 2.44 2.63 -

MetricGAN 2.86 - 3.99 3.18 3.42 1.90
TSTNN 2.96 0.95 4.33 3.53 3.67 0.92
T-GSA 3.06 - 4.18 3.59 3.62 -

DEMUCS 3.07 0.95 4.31 3.40 3.63 33.5
SE-Conformer 3.13 0.95 4.45 3.55 3.82 -

Learnable Loss Mixup 3.26 - 4.49 3.27 3.91 20.32

DPT-FSNet 3.33 0.96 4.58 3.72 4.00 0.88

Table 1. Comparison with other state-of-the-art systems on the VCTK+DEMAND dataset.

Method WB-PESQ STOI (%) SI-SDR (dB)

Noisy 1.82 (1.58) 86.62 (91.52) 9.03 (9.07)

NSNet 2.37 (2.15) 90.43 (94.47) 14.72 (15.61)
DTLN - (-) 84.68 (94.76) 10.53 (16.34 )

PoCoNet 2.83 (2.75) - (-) - (-)
FullSubNet 2.97 (2.78) 92.62 (96.11) 15.75 (17.29)
CTS-Net 3.02 (2.94) 92.70 (96.66) 15.58 (17.99)
GaGNet - (3.17) - (97.13) - (18.91)

DPT-FSNet 3.53 (3.26) 95.23 (97.68) 18.14 (20.36)

Table 2. Comparison with other state-of-the-art systems on the DNS with reverb
(no reverb) test sets.

To further validate the effectiveness of our method, we performed two ablation analysis experiments.

Method WB-PESQ STOI

CED + Dual-path former 2.97 0.95
STFT + CED + Sub-band former 3.20 0.95
STFT + CED + Full-sub former 3.33 0.96

Table 3. Ablation analysis results in terms of feature modeling on the VBD dataset.

Method WB-PESQ STOI

STFT + CED + Original Transfomer 3.04 0.95
STFT + Improved Transfomer 3.11 0.95

STFT + CED + Improved Transfomer 3.33 0.96

Table 4. Ablation analysis results in terms of model structure on the VBD dataset.

In Table 3: By comparing exp.3 and exp.2,it can be seen that using two transformers to model sub-band and full-band information
separately improves the performance over using two identical transformers to model only sub-band information. Moreover, the results of
exp.3 are much better than exp.1, which proves that the frequency domain feature is more effective than the time domain feature for the
dual-path transformer.
In Table 4: By comparing exp.3 and exp.1, we can find that the performance of the improved transformer is much better than that of
the original transformer. Performance can be improved by combining a convolutional encoder/decoder with the transformer as shown in
exp.3 and exp.2.

Conclusions

In this paper, we propose a dual-path transformer-based full-band and sub-band fusion network for speech enhancement in the frequency
domain. Inspired by the full-band and sub-band fusion models, we explore features that are more efficient for dual-path structures with the
intra part in the dual-path transformer models the sub-band information, and the inter part models the full-band information.
Experimental results on the Voice Bank + DEMAND dataset and DNS dataset show that the proposed method outperforms the current
state of the art at a relatively small model size.
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