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Summary
• We propose a novel dual-branch attention-in-attention transformer dubbed DB-AIAT to handle both coarse- and fine-grained

regions of the spectrum in parallel.
• From a complementary perspective, a magnitude masking branch is proposed to coarsely estimate the overall magnitude

spectrum, and simultaneously a complex refining branch is designed to compensate for the missing spectral details.
• Within each branch, we propose a novel attention-in-attention transformer-based module to replace the conventional RNNs

and temporal convolutional networks for temporal sequence modeling.
• Experimental results on Voice Bank + DEMAND demonstrate that DB-AIAT yields state-of-the-art performance (e.g., 3.31

PESQ, 95.6% STOI and 10.79dB SSNR) over previous advanced systems with a relatively small model size (2.81M).

Introduction
Decoupling-style phase-aware speech enhancement:

• The importance of phase has been illustrated in improving the speech perceptual quality, especially under low SNR condi-
tions.

• Decoupling-style phase-aware methods decouple the original complex spectrum estimation into magnitude and phase stage
by stage, and alleviate the implicit compensation effect between two targets.

Transformer-based speech sequence modeling:
• Convolutional recurrent networks (CRNs) and temporal convolutional networks (TCNs) still lack sufficient capacity to cap-

ture the global contextual information.
• In the speech separation and enhancement task, dual-path transformer-based networks are employed for extracting contex-

tual information along both the time and frequency axes.

Dual-branch Attention-in-Attention Transformer
Figure 1: The diagram of the proposed DB-AIAT. (a) The overall diagram of the proposed system.
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• As Figure. 1(a) and (b) show, MMB path estimates the magnitude mask to coarsely recover the magnitude of the target
speech, and the coarsely estimated spectral magnitude is coupled with the noisy phase, while CRB path receives noisy real
and imaginary (RI) components as the input and focuses on the residual fine-grained spectral structures.

|S̃mmb| = |Xt, f | ⊗ Mmmb, (1)

S̃mmb
r = |S̃mmb| ⊗ cos (θX) , S̃mmb

i = |S̃mmb| ⊗ sin (θX) , (2)

S̃r = S̃mmb
r + S̃crb

r , S̃i = S̃mmb
i + S̃crb

i (3)

Figure 2: (a) The diagram of ATFAT blocks. (b) The diagram of the AHA module.
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Experiments
Datset

• The dataset we chosen is a selection of the Voice Bank corpus with 28 speakers for training and another 2 unseen speakers
for testing.

• The training set consists of 11,572 mono audio samples, while the test set contains 824 utterances.
• For the training set, audio samples are mixed together with one of the 10 noise types from the DEMAND database. The

testing utterances are created with 5 unseen test-noise types from the DEMAND.
Implementation Setup

• The Hanning window of length 20ms is applied, with 50% overlap between adjacent frames. The 320-point STFT is utilized,
leading to a 161-D spectral feature.

• We conduct the power compression toward the spectral magnitude while leaving the phase unaltered, and the optimal
compression coefficient is set to 0.5, i.e., Cat

(
|X|0.5 cos (θX) , |X|0.5 sin (θX)

)
as input, Cat

(
|S|0.5 cos (θS) , |S|0.5 sin (θS)

)
as

target.
• Adam optimizer is utilized with the learning rate of 5e-4. 80 epochs are conducted for training in total, and the batch size is

set to 4 at the utterance level.

Comparison results & analysis
Table 1: Comparison with other state-of-the-art methods including time and T-F domain methods.

Methods Year Feature type Param. PESQ STOI(%) CSIG CBAK COVL SSNR
Noisy – – – 1.97 92.1 3.35 2.44 2.63 1.68

SOTA time and T-F Domain approaches
SEGAN 2017 Waveform 43.2 M 2.16 92.5 3.48 2.94 2.80 7.73
MMSEGAN 2018 Gammatone – 2.53 93.0 3.80 3.12 3.14 –
MetricGAN 2019 Magnitude 1.86 M 2.86 – 3.99 3.18 3.42 –
CRGAN 2020 Magnitude – 2.92 94.0 4.16 3.24 3.54 –
DCCRN 2020 RI components 3.7 M 2.68 93.7 3.88 3.18 3.27 8.62
RDL-Net 2020 Magnitude 3.91 M 3.02 93.8 4.38 3.43 3.72 –
PHASEN 2020 Magnitude+Phase – 2.99 – 4.21 3.55 3.62 10.18
MHSA-SPK 2020 Waveform – 2.99 – 4.15 3.42 3.53 –
T-GSA 2020 RI components – 3.06 93.7 4.18 3.59 3.62 10.78
TSTNN 2021 Waveform 0.92 M 2.96 95.0 4.17 3.53 3.49 9.70
DEMUCS 2021 Waveform 128 M 3.07 95.0 4.31 3.40 3.63 –
GaGNet 2021 Magnitude+RI 5.94 M 2.94 94.7 4.26 3.45 3.59 9.24
MetricGAN+ 2021 Magnitude – 3.15 – 4.14 3.16 3.64 –
SE-Conformer 2021 Waveform – 3.13 95.0 4.45 3.55 3.82 –

Proposed approaches
MMB-AIAT 2021 Magnitude 0.90 M 3.11 94.9 4.45 3.60 3.79 9.74
CRB-AIAT 2021 RI components 1.17 M 3.15 94.7 4.48 3.54 3.81 8.81
DB-AIAT 2021 Magnitude+RI 2.81 M 3.31 95.6 4.61 3.75 3.96 10.79
Table 2: Ablation study w.r.t. dual-branch strategy and attention-in-attention transformer structure.

Models
ATAB

/AFAB AHA PESQ STOI(%) CSIG CBAK COVL

Unprocessed – – 1.97 92.1 3.35 2.44 2.63
Single-Branch approaches

MMB-ATFAT !/! % 3.05 94.6 4.37 3.53 3.71
MMB-AIAT !/! ! 3.11 94.9 4.45 3.60 3.79
CRB-ATFAT !/! % 3.07 94.5 4.40 3.52 3.72
CRB-AIAT !/! ! 3.15 94.7 4.48 3.54 3.81

Dual-Branch approaches
DB-ATAT !/% % 2.82 94.2 4.17 3.29 3.47
DB-AFAT %/! % 2.93 94.4 4.28 3.31 3.63
DB-ATFAT !/! % 3.18 95.0 4.50 3.68 3.86
DB-AIAT !/! ! 3.31 95.6 4.61 3.75 3.96

Conclusions
• This paper propose a dual-branch transformer-based framework to collaboratively facilitate the clean spectrum estimation

from the complementary perspective.
• A magnitude masking branch (MMB) is designed to coarsely filter out the dominant noise components in the magnitude

domain, while the residual spectral details are derived by a complex refining branch (CRB) in parallel.
• Experimental results on Voice Bank + DEMAND dataset show that DB-AIAT achieves remarkable results and consistently

outperforms state-of-the-art baselines with a relatively light model size.


