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Experiments

Datset

* The dataset we chosen is a selection of the Voice Bank corpus with 28 speakers for training and another 2 unseen speakers
for testing.

* The training set consists of 11,572 mono audio samples, while the test set contains 824 utterances.

e For the training set, audio samples are mixed together with one of the 10 noise types from the DEMAND database. The
testing utterances are created with 5 unseen test-noise types from the DEMAND.

Summary

e We propose a novel dual-branch attention-in-attention transformer dubbed DB-AIAT to handle both coarse- and fine-grained
regions of the spectrum in parallel.

* From a complementary perspective, a magnitude masking branch is proposed to coarsely estimate the overall magnitude
spectrum, and simultaneously a complex refining branch is designed to compensate for the missing spectral details.

e Within each branch, we propose a novel attention-in-attention transformer-based module to replace the conventional RNNs
and temporal convolutional networks for temporal sequence modeling.

e Experimental results on Voice Bank + DEMAND demonstrate that DB-AIAT yields state-of-the-art performance (e.g., 3.31

Implementation Setup
PESQ, 95.6% STOI and 10.79dB SSNR) over previous advanced systems with a relatively small model size (2.81M).

 The Hanning window of length 20ms is applied, with 50% overlap between adjacent frames. The 320-point STFT is utilized,
leading to a 161-D spectral feature.

e We conduct the power compression toward the spectral magnitude while leaving the phase unaltered, and the optimal
compression coefficient is set to 0.5, i.e., Cat (] X|°° cos (6x),|X|*°sin (x)) as input, Cat (|S]*° cos (6s),[S|"> sin (6s)) as
target.

 Adam optimizer is utilized with the learning rate of 5e-4. 80 epochs are conducted for training in total, and the batch size is

set to 4 at the utterance level.

Introduction

Decoupling-style phase-aware speech enhancement:

* The importance of phase has been illustrated in improving the speech perceptual quality, especially under low SNR condi-
tions.

* Decoupling-style phase-aware methods decouple the original complex spectrum estimation into magnitude and phase stage
by stage, and alleviate the implicit compensation effect between two targets.

Comparison results & analysis

Table 1: Comparison with other state-of-the-art methods including time and T-F domain methods.

Transformer-based speech sequence modeling;:
e Convolutional recurrent networks (CRNs) and temporal convolutional networks (TCNs) still lack sufficient capacity to cap-

ture the g]oba] contextual information. Methods Year Feature type Param. PESQ STOI(%) CSIG CBAK COVL SSNR
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Table 2: Ablation study w.r.t. dual-branch strategy and attention-in-attention transformer structure.
ATAb

e As Figure. 1(a) and (b) show, MMB path estimates the magnitude mask to coarsely recover the magnitude of the target

: . . : . : . : Model AHA | PES STOI(%) CSIG CBAK COVL
speech, and the coarsely estimated spectral magnitude is coupled with the noisy phase, while CRB path receives noisy real e / AFAB < (%)
and imaginary (RI) components as the input and focuses on the residual fine-grained spectral structures. Unprocessed - Sl 1-97h 92-1h 3.35 244 2.63
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s L L L . t i By 00 W t from the complementary perspective.
g EE z |G ALEIEE z |l = _' e e * A magnitude masking branch (MMB) is designed to coarsely filter out the dominant noise components in the magnitude
X = " |- = domain, while the residual spectral details are derived by a complex refining branch (CRB) in parallel.
\_ Vi (b e Experimental results on Voice Bank + DEMAND dataset show that DB-AIAT achieves remarkable results and consistently

(a)

outperforms state-of-the-art baselines with a relatively light model size.




