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Motivation

2

The Matched Signal Transform (MST) can be employed to:

 suppress wide-band time-varying interference,

 track the Instantaneous Frequency Laws (IFLs) of multi-component non-stationary signals,

 process nonlinear beat signals provided by a Frequency Modulated Continuous Wave 

(FMCW) Radar.

*

*Anghel, A.; Vasile, G.; Cacoveanu, R.; Ioana, C.; Ciochina, S., Short-Range Wideband FMCW Radar for

Millimetric Displacement Measurements, IEEE Transactions on Geoscience and Remote Sensing, vol.52, no.9,

Sept. 2014, pp.5633-5642.

 How can we design a Constant False

Alarm Rate (CFAR) detector in the MST

domain?

 What is the probability density function

(PDF) of the noise samples in this

transformed domain?

Why study a detection problem in the Matched Signal Transform (MST) domain?
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The Matched Signal Transform (MST)
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𝑆 𝛼 =  
𝑡∈𝒟

𝜃′ 𝑡 s(t)𝑒−𝑗2𝜋𝛼𝜃 𝑡 𝑑𝑡 𝛼 : modulation rate

𝜃(𝑡) : characteristic (basis) function

Definition:

s(t)
Time domain

S(α)
Modulation rate domain

An essential property for non-stationary signals:

s t =  

𝑚=1

𝑀

𝐴𝑚𝑒𝑗2𝜋𝛼𝑚𝜃 𝑡 S 𝛼 =  

𝑚=1

𝑀

𝐴𝑚 𝛿 𝛼 − 𝛼𝑚

Localizes non-stationary signals described by 𝜃 𝑡 at their modulation rates.
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Classical MSTs
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Characteristic 

function

Time-Frequency representation of

the matched signal
Transform

𝜃 𝑡 = 𝑡

Fourier

Linear MST

Exponential

𝜃 𝑡 = 𝑡2
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𝑆 𝛼 =  
𝑡∈𝒟

2𝑡 s(t)𝑒−𝑗2𝜋𝛼𝑡2
𝑑𝑡

𝜃 𝑡 = 𝑒𝑘𝑡

Time [s]

F
re

q
u
e
n
c
y
 [
H

z
]

 

 

0 0.5 1
-500

0

500

-40

-20

0

𝑆 𝛼 =  
𝑡∈𝒟
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MST and Time warping
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s t =  

𝑚=1

𝑀

𝐴𝑚𝑒𝑗2𝜋𝛼𝑚𝜃 𝑡

𝑆 𝛼 =  
𝑡∈𝒟

𝜃′ 𝑡 s t 𝑒−𝑗2𝜋𝛼𝜃 𝑡 𝑑𝑡

Warping operator

𝑾  
𝑑𝑤

𝑑𝑡
> 0 ; 𝑥 𝑡 → 𝑾𝑥 𝑡 = 𝑥 𝑤 𝑡

𝑤 𝑡𝑤 = 𝜃−1(𝑡𝑤)

𝑠𝑤𝑎𝑟𝑝 𝑡𝑤 =  

𝑚=1

𝑀

𝐴𝑚𝑒𝑗2𝜋𝛼𝑚𝑡𝑤

All IFLs become simultaneously complex sinusoids (stationary components).

Time warping-based MST 

(Fourier transform in the warped time axis)
Direct MST
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MST implementations
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𝑆𝑀𝑆𝑇 𝑘 =
1

Θ
 

𝑛=0

𝑁−1

𝜃′(𝑡𝑛) 𝑠 𝑛 𝑒−𝑗2𝜋𝛼𝑘𝜃 𝑡𝑛 𝑆𝑅𝑆 𝑘 =
1

𝑁
 

𝑛=0

𝑁−1

𝑠𝑤 𝑛 𝑒−𝑗2𝜋𝛼𝑘𝑡𝑤,𝑛

Analog MSTs

𝑆 𝛼 =  
𝑡∈𝒟

𝜃′ 𝑡 s t 𝑒−𝑗2𝜋𝛼𝜃 𝑡 𝑑𝑡 𝑆 𝛼 =  
𝑡𝑤∈𝒟𝑤

𝑠𝑤𝑎𝑟𝑝 𝑡𝑤 𝑒−𝑗2𝜋𝛼𝑡𝑤𝑑𝑡𝑤

𝑠𝑤 𝑛 : resampled version of 𝑠 𝑛
at the moments 𝑡𝑤,𝑛 = 𝑛𝑇𝑆,𝑤

Θ =  

𝑛=0

𝑁−1

𝜃′(𝑡𝑛) : amplitude normalization

Discretization
𝑠 𝑛 = 𝑠 𝑡𝑛 ,     𝑡𝑛 = 𝑛𝑇𝑆,     𝑛 = 0, 𝑁 − 1

𝛼𝑘 , 𝑘 = 0, 𝐾 − 1

Discrete MSTs

Time Resampling 

+ 

Fast Fourier Transform (FFT)

Direct MST: summation for each 𝛼𝑘
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e.g.:

Warping with 

Resampling

(Interpolation)

𝑠1 𝑡 = 𝐴1𝑒
𝑗2𝜋𝛼1𝜃(𝑡)

𝜃 𝑡 = 𝑡2 + 𝑡3

𝑠1 𝑡

𝑡𝑤 = 𝜃 𝑡

Time resampling

𝑠1 𝑡𝑤

𝑠1 𝑡𝑤

𝑠1 𝑛 , 𝑡𝑛 = 𝑛𝑇𝑆

𝑠1 𝑛 , 𝜃(𝑡𝑛)

𝑠𝑤,1 𝑛 ,

𝑡𝑤,𝑛 = 𝑛𝑇𝑆,𝑤
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Nearest neighbor

Linear

Direct MST
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𝑥 𝑛 =  

𝑚=1

𝑀

𝐴𝑚𝑒𝑗2𝜋𝛼𝑚𝜃 𝑛𝑇𝑆 + 𝑤𝑅 𝑛 + 𝑗𝑤𝐼 𝑛 = 𝑠 𝑛 + 𝑤[𝑛]

The MST of noisy signals

Matched signal
Complex Circular 

White Gaussian Noise

𝐸 𝑤𝑅,𝐼 𝑛 = 0

𝐸 𝑤𝑅,𝐼 𝑛
2

= 𝜎2
+

 𝐸{ 𝑋𝑅𝑆 𝑘 2}
• Nearest neighbor interpolation

• Linear interpolation

 𝐸{ 𝑋𝑀𝑆𝑇 𝑘 2}

Expectation of the MST’s squared magnitude

The noise floor in the MST domain 

depends on:

Implementation 

&

Modulation rate.
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𝑤 𝑛 = 𝑤𝑅 𝑛 + 𝑗𝑤𝐼 𝑛

The MST of noise samples

Complex Circular 

White Gaussian Noise

𝐸 𝑤𝑅,𝐼 𝑛 = 0

𝐸 𝑤𝑅,𝐼 𝑛
2

= 𝜎2

What is the PDF of the noise samples in the MST domain?

𝑊𝑀𝑆𝑇 𝑘 =
1

Θ
 

𝑛=0

𝑁−1

𝜃′(𝑡𝑛) 𝑤 𝑛 𝑒−𝑗2𝜋𝛼𝑘𝜃 𝑡𝑛

Direct implementation Time resampling implementation

𝑊𝑅𝑆 𝑘 =
1

𝑁
 

𝑛=0

𝑁−1

𝑤 𝑛 𝑒−𝑗2𝜋𝛼𝑘𝑡𝑤,𝑛

𝑓1 𝑢 =
1

2𝜋𝜎
𝑒

−
𝑢2

2𝜎2
Probability Density 

Function (PDF) 𝐹1 𝑣 = 𝑒−
𝜎2𝑣2

2
Characteristic 

Function (CF)

𝑅𝑒 𝑊𝑀𝑆𝑇 𝑘 𝐼𝑚 𝑊𝑀𝑆𝑇 𝑘 𝑅𝑒 𝑊𝑅𝑆 𝑘 𝐼𝑚 𝑊𝑅𝑆 𝑘
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The MST of noise samples

Direct implementation

𝑅𝑒 𝑊𝑀𝑆𝑇 𝑘 =  

𝑛=0

𝑁−1

𝑤𝑅 𝑛
1

Θ
𝜃′(𝑡𝑛) cos 2𝜋𝛼𝑘𝜃 𝑡𝑛 +  

𝑛=0

𝑁−1

𝑤𝐼 𝑛
1

Θ
𝜃′(𝑡𝑛) sin 2𝜋𝛼𝑘𝜃 𝑡𝑛

𝐼𝑚 𝑊𝑀𝑆𝑇 𝑘 = −  

𝑛=0

𝑁−1

𝑤𝑅 𝑛
1

Θ
𝜃′(𝑡𝑛) sin 2𝜋𝛼𝑘𝜃 𝑡𝑛 +  

𝑛=0

𝑁−1

𝑤𝐼 𝑛
1

Θ
𝜃′(𝑡𝑛) cos 2𝜋𝛼𝑘𝜃 𝑡𝑛

 The real and imaginary parts of a sample 𝑊𝑀𝑆𝑇 𝑘 are a weighted sum of the initial

noise samples. The PDF of 𝑅𝑒/𝐼𝑚 𝑊𝑀𝑆𝑇 𝑘 can be computed using classical

results of random variables theory.

𝑆 =  

𝑛=0

𝑁−1

𝑎𝑛𝑥𝑛 𝐹𝑆 𝑣 =  

𝑛=0

𝑁−1

𝐹𝑥𝑛
𝑎𝑛𝑣 .is

 If 𝑥0, 𝑥1, … , 𝑥𝑁−1 are random variables having the CFs 𝐹𝑥0
𝑣 , 𝐹𝑥1

𝑣 , … , 𝐹𝑥𝑁−1
𝑣 , 

then the CF of

𝐹𝑅𝑒/𝐼𝑚 𝑊𝑀𝑆𝑇 𝑘 𝑣, 𝑘 = exp −
𝜎2

Θ2  

𝑛=0

𝑁−1

𝜃′(𝑡𝑛) 2
𝑣2

2

The CF of a Gaussian noise,

independent of 𝛼𝑘

𝜎𝑊
2
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t

s(t)

tw

swarp(tw)

tw

swarp(tw)

sw[n]

s[n]

s[n]
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The MST of noise samples

Resampling-based implementation (1)

Interpolation method: Nearest neighbor

Uniform sampling 

Non-uniform sampling 

Nearest neighbor resampling

After nearest neighbor resampling:

 Some samples may not appear anymore,

 While others may be repeated.

We can define an index function

𝛽 𝑛, 𝑙
to link N samples from the initial signal to

N samples of the resampled one, in the

following way:

Sample n from the initial signal appears in

the resampled signal at the indices:

𝛽 𝑛, 1 , 𝛽 𝑛, 2 , … , 𝛽 𝑛, 𝜈(𝑛) ,

where 𝜈(𝑛) is the number of repetitions of

sample n.
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The MST of noise samples

Resampling-based implementation (2)

𝑅𝑒 𝑊𝑅𝑆 𝑘 =  

𝑛=0

𝑁−1

𝑤𝑅 𝑛
1

𝑁
 

𝑙=1

𝜈 𝑙

cos 2𝜋𝛼𝑘𝑡𝑤,𝛽[𝑛,𝑙] +  

𝑛=0

𝑁−1

𝑤𝐼 𝑛
1

𝑁
 

𝑙=1

𝜈 𝑙

sin 2𝜋𝛼𝑘𝑡𝑤,𝛽[𝑛,𝑙]

𝐼𝑚 𝑊𝑅𝑆 𝑘 = −  

𝑛=0

𝑁−1

𝑤𝑅 𝑛
1

𝑁
 

𝑙=1

𝜈 𝑙

sin 2𝜋𝛼𝑘𝑡𝑤,𝛽[𝑛,𝑙] +  

𝑛=0

𝑁−1

𝑤𝐼 𝑛
1

𝑁
 

𝑙=1

𝜈 𝑙

cos 2𝜋𝛼𝑘𝑡𝑤,𝛽[𝑛,𝑙]

𝐹𝑅𝑒/𝐼𝑚 𝑊𝑅𝑆 𝑘 𝑣, 𝑘

= exp −
𝜎2

𝑁2
 

𝑛=0

𝑁−1

 

𝑙=1

𝜈 𝑙

cos 2𝜋𝛼𝑘𝑡𝑤,𝛽[𝑛,𝑙]

2

+
1

𝑁
 

𝑙=1

𝜈 𝑙

sin 2𝜋𝛼𝑘𝑡𝑤,𝛽[𝑛,𝑙]

2

𝑣2

2

The CF of a Gaussian noise, whose variance 𝜎𝑊
2 [𝑘] depends on:

 𝛼𝑘 : the modulation rate,

 𝛽[𝑛, 𝑙] : the actual linking between the initial signal and the resampled one.

 The real and imaginary parts of a sample 𝑊𝑅𝑆 𝑘 are a weighted sum of the

initial noise samples that takes into account the index function 𝛽 𝑛, 𝑙 .

Interpolation method: Nearest neighbor
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Detection scheme in the MST domain (1)

x[n] MST |  |2 Peak picking

Compute local 

variances

Bin k

PF

Compute 

threshold

Decision

𝑊[𝑘] 2 = 𝑅𝑒 𝑊[𝑘] 2 + 𝐼𝑚 𝑊[𝑘] 2

Sum of two squared independent 

Gaussian variables.

𝑃𝐷𝐹 𝑊[𝑘] 2 𝑢 =
1

2𝜎𝑊
2 [𝑘]

exp −
𝑢

2𝜎𝑊
2 [𝑘]

and 𝑃𝐹 =  

𝛾

∞

𝑃𝐷𝐹 𝑊[𝑘] 2 𝑢 𝑑𝑢

𝜎𝑊
2 [𝑘] Probability of

false alarm
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Detection scheme in the MST domain (2)

𝐻1: 𝐸 𝑋 𝑘 2 =  𝐴𝑘
2

+ 2𝜎𝑊
2 𝑘

𝐻0: 𝐸 𝑋 𝑘 2 = 2𝜎𝑊
2 𝑘

x[n] MST |  |2 Peak picking

Compute local 

variances

Bin k

PF

Compute 

threshold

Decision
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Contributions:

• We point out the characteristics of white Gaussian noise in the

MST domain, and

• Propose a detection scheme for non-stationary signals processed

with two implementations of the discrete MST.

In future work:

• The theoretical parameters of the noise in the MST domain will

be determined for other interpolation methods.

• The results will be applied to radar and ultrasound applications.

Conclusions & Perspectives
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Thanks for your attention !!!


