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• In real acoustic environment, speech quality and

intelligibility can be severely degraded by

background noise.

• Supervised SE methods based on deep learning

are mainly divided into time-frequency domain

methods and time domain methods [1].

• The time-frequency domain methods mainly

conduct masking and mapping on spectral magnitude

or complex spectrum [2, 3].

• The time domain method directly map the clean

waveform.

Figure 1: adverse acoustic environment
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The recovery  of  phase  is important to improve  speech perception quality. [4]

Complex spectrum based SE:

1）complex ration mask （CRM）[5]

2）estimating real and imaginary components of complex spectrum [6]

Background
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[4] K. Paliwal, K. Wojcicki, and B. Shannon, “The importance of  phase in speech enhancement,” Speech Commun, vol. 53, no.4, pp. 465–494, 2011.
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[6] K. Tan and D. L. Wang, “Learning complex spectral mapping with gated convolutional recurrent networks for monaural speech enhancement,” IEEE/ACM 

Trans. Audio. Speech, Lang. Process., vol. 28, pp. 380–390, 2019

4/20



OUTLINE

Introduction

Proposed Method

Experiments and Analysis

Conclusion

Related works

IACAS

5/20



Decoupling-style phase-aware SE methods:

Decouple the original complex spectrum optimization into magnitude and phase 

estimation, and two sub-network are utilized in a step-wise manner [7].

[7] A. Li, W. Liu, C. Zheng, C. Fan, and X. Li, “Two Heads are Better Than One: A Two-Stage Complex Spectral Mapping Approach for Monaural Speech Enhancement,” 
IEEE/ACM Trans. Audio. Speech, Lang. Process., vol. 29, pp. 1829–1843, 2021.

Fig 2：The diagram of CTS-Net [5], which consist of a magnitude estimation network (ME-Net) 

and a complex spectrum refine network (CS-Net)
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Transformer-based SE approaches:

Dual-path transformer has been developed for sequence modelling in speech area [8]. 

[8] J. Chen, Q. Mao, and D. Liu, “Dual-path transformer network: Direct context-aware modeling for end-to-end monaural speech separation,” arXiv preprint 

arXiv:2007.13975, 2020.

Fig 3：The diagram of dual-path transformer for speech separation 
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Fig 4：Proposed dual-branch system flowchart

Proposed Method

IACAS
Dual-branch Attention-In-Attention Transformer for single-channel SE

• Two core branches are elaborately designed in parallel:

➢ A magnitude masking branch (MMB): filtering out most of the noise in the magnitude domain.

➢ A complex refining branch (CRB):  compensate for the lost spectral details and implicitly recover 

phase in the complex domain
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➢ MMB path estimates the magnitude mask to coarsely recover the magnitude of the target 

speech, and the coarsely estimated spectral magnitude is coupled with the noisy phase.

➢ CRB path receives noisy real and imaginary (RI) components as the input and focuses on 

the residual fine-grained spectral structures which is lost in MMB.

➢ Finally, we sum the coarse-denoised complex spectrum in MMB and the fine-grained 

complex spectral details in CPB together to reconstruct the clean complex spectrum

➢ The training procedure can be expressed as:

,

mmb mmb
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Attention-in-attention transformer: 

consists of four adaptive time-frequency attention transformer-based (ATFA-T) blocks and 

an adaptive hierarchical attention (AHA) module.

Fig 5：The diagram of ATFA-T blocks

Proposed Method

IACAS

Fig 6：The diagram of AHA module

11/20



Proposed Method

IACAS

➢ The loss function of the proposed dual-branch model: 

(6)

(7)

(8)
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Dataset

⚫ Corpus: Voice Bank [9], which includes 28 speakers for training and 

2 unseen speakers for testing.

⚫ Training set  

⚫ Test set  : 

✓ 11572 utterances from 28 speakers (14 male and 14 female)

✓ ten environmental noise from DEMAND database [10], mixed at 0, 

5,10, 15 dB.

✓ 824 utterances from 2 unseen speakers

✓ SNRs and Noises: five unseen environmental mixed at 2.5, 7.5, 12.5, 

17.5 dB.

[9] C. Veaux, J. Yamagishi, and S. King, “The voice bank corpus: Design, collection and data analysis of a large regional accent speech database,” in Proc. O-COCOSDA/CASLRE. 
IEEE, 2013, pp. 1–4.
[10] J. Thiemann, N. Ito, and E. Vincent, “The diverse environments multichannel acoustic noise database: A database of multichannel environmental noise recordings,” 
Acoustical Society of America Journal, vol. 133, no. 5, pp. 3591, 2013.
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Experimental setup:

• Sampling rate: 16kHz

• STFT Window size: 320 samples (20ms), Overlap: 160 samples (10ms), 161-

dimensional STFT spectrum

• Power compression [11]: compression coefficient 𝜂 is set to 0.5 towards 

magnitude. Input feature:

• 𝛽1=0.9，𝛽2=0.999 in Adam[12] with with the learning rate of 5e-4.

• 80 epochs for training, and the batch size is set to 4.

[11] A. Li, C. Zheng, R. Peng, and X. Li, “On the importance of power compression and phase estimation in monaural speech dereverberation,” JASA Express Letters, vol. 
1, no. 1, pp. 014802, 2021
[12] D. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv preprint arXiv:1412.6980, 2014.

Experiments and Analysis

IACAS

15/20



• Baselines:

Magnitude domain baselines:

• MMSE-GAN, MetriGAN, CRGAN, RDL-Net, MetriGAN+

Time domain baselines:

• SEGAN, SERGAN, MHSA-SPK, TSTNN, Demucs, SE-Conformer

Complex domain baselines:

• DCCRN, TGSA

Decoupling-style baselines:

• GAG-NET, PHASEN

• Evaluation metrics: 

• PESQ, STOI, segmental signal-to-noise ratio (SSNR)

• The MOS prediction of speech distortion (CSIG), background noise (CBAK) and 

overall effect (COVL).[13]

[13] Y. Hu and P. C. Loizou, “Evaluation of objective quality measures for speech enhancement,” IEEE/ACM Trans. Audio. Speech, Lang. Process., vol. 16, no. 1, pp. 229–238, 
2007.
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Table 1：Comparison with other state-of-the-art methods including time and T-F domain methods.

• when only either single-path is adopted, MMB-AIAT and CRB-AIAT achieves competitive performance 

compared with advanced single-branch baselines. 

• By simultaneously adopting two branches in parallel, DB-AIAT consistently surpasses existing SOTA time and 

T-F domain methods in terms of most metrics.
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IACAS
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Table 2：Ablation study on dual-branch strategy and attention-in-attention 

transformer structure.

Experimental Results

IACAS

(a) Noisy P232_005 (pesq= 1.18) (b) MMB-AIAT (pesq= 2.81)

(c) CRB-AIAT (pesq= 2.85) (d) DB-AIAT (pesq= 3.19)

• The proposed attention-in-attention transformer significantlt improve speech quality.

• Merging two branches can collaboratively facilitate the spectrum recovery from the complementary perspective.

Fig 7：Visualization of the spectrograms.
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⚫ We propose a dual-branch transformer-based method to collaboratively recover the 

clean complex spectrum from the complementary perspective.

⚫ A magnitude masking branch (MMB) is designed to coarsely estimate the magnitude 

spectrum of clean speech, and the residual spectral details are derived in parallel by a 

complex refining branch (CRB).

⚫ We propose an attention-in-attention transformer (AIAT) to capture long-range 

temporal-frequency dependencies and aggregate global hierarchical contextual 

information

⚫ Experimental results show that DB-AIAT yields state-of-the-art performance (3.31 

PESQ, 95.6% STOI and 10.79dB SSNR) over previous advanced systems with a 

relatively small model size (2.81M).
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