

Dual-branch Attention-In-Attention Transformer for singlechannel speech enhancement

Guochen Yu^{1,2}, Andong Li², Chengshi Zheng², Yinuo Guo³, Yutian Wang¹, and Hui Wang¹

¹State Key Laboratory of Media Convergence and Communication, Communication University of China, Beijing, China

²Key Laboratory of Noise and Vibration Research, Institute of Acoustics, Chinese Academy of

Sciences, Beijing, China

³Bytedance, Beijing, China

Background

Related works

Proposed Method

04 Experiments and Analysis

Background

- In real acoustic environment, speech quality and intelligibility can be severely degraded by background noise.
- Supervised SE methods based on deep learning are mainly divided into time-frequency domain methods and time domain methods [1].
- The time-frequency domain methods mainly conduct masking and mapping on spectral magnitude or complex spectrum [2, 3].

Figure 1: adverse acoustic environment

• The time domain method directly map the clean waveform.

[1] D. L. Wang and J. Chen, "Supervised speech separation based on deep learning: An overview," IEEE/ACM Trans. Audio. Speech, Lang. Process., vol. 26, no. 10, pp. 1702–1726, 2018
[2] V. Wang, A. Narryanan, and D. L. Wang, "On training targets for supervised speech separation," IEEE/ACM Trans. Audio. Speech, Lang. Process., vol. 22, no. 10, pp. 1702–1726, 2018

[2] Y. Wang, A. Narayanan, and D. L. Wang, "On training targets for supervised speech separation," IEEE/ACM Trans. Audio. Speech, Lang. Process., , vol. 22, no. 12, pp. 1849–1858, 2014

[3] Y. Xu, J. Du, L-R. Dai, and C-H. Lee, "A regression approach to speech enhancement based on deep neural networks," IEEE/ACM Trans. Audio. Speech, Lang. Process., vol. 23, no. 1, pp. 7–19, 2014.

Background

The recovery of phase is important to improve speech perception quality. [4] Complex spectrum based SE: $Y_{m,f}^{(r)} + iY_{m,f}^{(i)} = \left(S_{m,f}^{(r)} + N_{m,f}^{(r)}\right) + i\left(S_{m,f}^{(i)} + N_{m,f}^{(i)}\right),$

1) complex ration mask (CRM) [5]

$$CRM = \frac{X_r S_r + X_i S_i}{X_r^2 + X_i^2} + j \frac{X_r S_i - X_i S_r}{X_r^2 + X_i^2} = \widetilde{M}_r + j \widetilde{M}_i$$

2) estimating real and imaginary components of complex spectrum [6]

[4] K. Paliwal, K. Wojcicki, and B. Shannon, "The importance of phase in speech enhancement," Speech Commun, vol. 53, no.4, pp. 465–494, 2011.

[5] D. S. Williamson, Y. Wang, D. Wang, Complex ratio masking for monaural speech separation, IEEE/ACM Trans. Audio. Speech, Lang. Process., vol. 24, no. 3, pp. 483–492, 2015

[6] K. Tan and D. L. Wang, "Learning complex spectral mapping with gated convolutional recurrent networks for monaural speech enhancement," IEEE/ACM Trans. Audio. Speech, Lang. Process., vol. 28, pp. 380–390, 2019

Proposed Method

Experiments and Analysis

Related works

Decoupling-style phase-aware SE methods:

Decouple the original complex spectrum optimization into magnitude and phase estimation, and two sub-network are utilized in a step-wise manner [7].

Fig 2: The diagram of CTS-Net [5], which consist of a magnitude estimation network (ME-Net) and a complex spectrum refine network (CS-Net)

[7] A. Li, W. Liu, C. Zheng, C. Fan, and X. Li, "Two Heads are Better Than One: A Two-Stage Complex Spectral Mapping Approach for Monaural Speech Enhancement," IEEE/ACM Trans. Audio. Speech, Lang. Process., vol. 29, pp. 1829–1843, 2021.

Related works

Transformer-based SE approaches:

Dual-path transformer has been developed for sequence modelling in speech area [8].

Fig 3: The diagram of dual-path transformer for speech separation

[8] J. Chen, Q. Mao, and D. Liu, "Dual-path transformer network: Direct context-aware modeling for end-to-end monaural speech separation," arXiv preprint arXiv:2007.13975, 2020.

Related works

Proposed Method

Experiments and Analysis

٠

Dual-branch Attention-In-Attention Transformer for single-channel SE

- Two core branches are elaborately designed in parallel:
 - > A magnitude masking branch (MMB): filtering out most of the noise in the magnitude domain.
 - A complex refining branch (CRB): compensate for the lost spectral details and implicitly recover phase in the complex domain

Proposed Method

- MMB path estimates the magnitude mask to coarsely recover the magnitude of the target speech, and the coarsely estimated spectral magnitude is coupled with the noisy phase.
- CRB path receives noisy real and imaginary (RI) components as the input and focuses on the residual fine-grained spectral structures which is lost in MMB.
- ➢ Finally, we sum the coarse-denoised complex spectrum in MMB and the fine-grained complex spectral details in CPB together to reconstruct the clean complex spectrum
- > The training procedure can be expressed as:

$$\left|\tilde{S}^{mmb}\right| = \left|X_{t,f}\right| \otimes M^{mmb} \tag{1}$$

$$\tilde{S}_{r}^{mmb} = \left| \tilde{S}^{mmb} \right| \otimes \cos(\theta_{X})$$
(2)

$$\tilde{S}_{i}^{mmb} = \left| \tilde{S}^{mmb} \right| \otimes \sin(\theta_{X})$$
(3)

$$\tilde{S}_r = \tilde{S}_r^{mmb} + \tilde{S}_r^{crb} \tag{4}$$

$$\tilde{S}_i = \tilde{S}_i^{mmb} + \tilde{S}_i^{crb}$$
⁽⁵⁾

Proposed Method

Attention-in-attention transformer:

consists of four adaptive time-frequency attention transformer-based (ATFA-T) blocks and an adaptive hierarchical attention (AHA) module.

(a)

Fig 5: The diagram of ATFA-T blocks

Proposed Method

(6)

> The loss function of the proposed dual-branch model:

$$L^{Mag} = \left\| \sqrt{\left| \tilde{S}_{r} \right|^{2} + \left| \tilde{S}_{i} \right|^{2}} - \sqrt{\left| S_{r} \right|^{2} + \left| S_{i} \right|^{2}} \right\|_{F}^{2}$$

$$L^{RI} = \left\| \tilde{S}_{r} - S_{r} \right\|_{F}^{2} + \left\| \tilde{S}_{i} - S_{i} \right\|_{F}^{2}$$
⁽⁷⁾

$$L_{FULL} = L^{Mag} + L^{RI}$$
⁽⁸⁾

03 Proposed Method

04 Experiments and Analysis

Experiments and Analysis

Dataset

- Corpus: Voice Bank [9], which includes 28 speakers for training and 2 unseen speakers for testing.
- Training set
 - ✓ 11572 utterances from 28 speakers (14 male and 14 female)
 - ✓ ten environmental noise from DEMAND database [10], mixed at 0, 5,10, 15 dB.
- Test set :
 - ✓ 824 utterances from 2 unseen speakers
 - ✓ SNRs and Noises: five unseen environmental mixed at 2.5, 7.5, 12.5, 17.5 dB.

[9] C. Veaux, J. Yamagishi, and S. King, "The voice bank corpus: Design, collection and data analysis of a large regional accent speech database," in Proc. O-COCOSDA/CASLRE. IEEE, 2013, pp. 1–4.

[10] J. Thiemann, N. Ito, and E. Vincent, "The diverse environments multichannel acoustic noise database: A database of multichannel environmental noise recordings," Acoustical Society of America Journal, vol. 133, no. 5, pp. 3591, 2013.

Experiments and Analysis

Experimental setup:

- Sampling rate: 16kHz
- STFT Window size: 320 samples (20ms), Overlap: 160 samples (10ms), 161dimensional STFT spectrum
- Power compression [11]: compression coefficient η is set to 0.5 towards magnitude. Input feature:

 $Cat\left(|X|^{0.5}\cos\left(\theta_X\right), |X|^{0.5}\sin\left(\theta_X\right)\right)$

- $\beta_1 = 0.9$, $\beta_2 = 0.999$ in Adam[12] with with the learning rate of 5e-4.
- 80 epochs for training, and the batch size is set to 4.

[11] A. Li, C. Zheng, R. Peng, and X. Li, "On the importance of power compression and phase estimation in monaural speech dereverberation," JASA Express Letters, vol.
1, no. 1, pp. 014802, 2021
[12] D. Kingma and J. Ba, "Adam: A method for stochastic optimization," arXiv preprint arXiv:1412.6980, 2014.

Experiments and Analysis

• Baselines:

Magnitude domain baselines:

• MMSE-GAN, MetriGAN, CRGAN, RDL-Net, MetriGAN+

Time domain baselines:

- SEGAN, SERGAN, MHSA-SPK, TSTNN, Demucs, SE-Conformer Complex domain baselines:
- DCCRN, TGSA

Decoupling-style baselines:

- GAG-NET, PHASEN
- Evaluation metrics:
 - PESQ, STOI, segmental signal-to-noise ratio (SSNR)
 - The MOS prediction of speech distortion (CSIG), background noise (CBAK) and overall effect (COVL).[13]

Experimental Results

Table 1: Comparison with other state-of-the-art methods including time and T-F domain methods.

IACAS												
	Methods	Year	Feature type	Param.	PESQ	STOI(%)	CSIG	CBAK	COVL	SSNR		
	Noisy	-	-	_	1.97	92.1	3.35	2.44	2.63	1.68		
	SOTA time and T-F Domain approaches											
	SEGAN [24]	2017	Waveform	43.2 M	2.16	92.5	3.48	2.94	2.80	7.73		
	MMSEGAN [25]	2018	Gammatone	_	2.53	93.0	3.80	3.12	3.14	_		
	MetricGAN [26]	2019	Magnitude	1.86 M	2.86	_	3.99	3.18	3.42	_		
	CRGAN [27]	2020	Magnitude	_	2.92	94.0	4.16	3.24	3.54	_		
	DCCRN [8]	2020	RI components	3.7 M	2.68	93.7	3.88	3.18	3.27	8.62		
	RDL-Net [28]	2020	Magnitude	3.91 M	3.02	93.8	4.38	3.43	3.72	_		
	PHASEN [29]	2020	Magnitude+Phase	_	2.99	_	4.21	3.55	3.62	10.18		
	MHSA-SPK [30]	2020	Waveform	_	2.99	_	4.15	3.42	3.53	_		
	T-GSA [31]	2020	RI components	_	3.06	93.7	4.18	3.59	3.62	10.78		
	TSTNN [10]	2021	Waveform	0.92 M	2.96	95.0	4.17	3.53	3.49	9.70		
	DEMUCS [11]	2021	Waveform	128 M	3.07	95.0	4.31	3.40	3.63	_		
	GaGNet [13]	2021	Magnitude+RI	5.94 M	2.94	94.7	4.26	3.45	3.59	9.24		
	MetricGAN+ [32]	2021	Magnitude	_	3.15	_	4.14	3.16	3.64	_		
	SE-Conformer [33]	2021	Waveform	_	3.13	95.0	4.45	3.55	3.82	_		
	Proposed approaches											
-	MMB-AIAT	2021	Magnitude	0.90 M	3.11	94.9	4.45	3.60	3.79	9.74		
	CRB-AIAT	2021	RI components	1.17 M	3.15	94.7	4.48	3.54	3.81	8.81		
	DB-AIAT	2021	Magnitude+RI	2.81 M	3.31	95.6	4.61	3.75	3.96	10.79		

- when only either single-path is adopted, MMB-AIAT and CRB-AIAT achieves competitive performance compared with advanced single-branch baselines.
- By simultaneously adopting two branches in parallel, DB-AIAT consistently surpasses existing SOTA time and T-F domain methods in terms of most metrics.

Experimental Results

Table 2: Ablation study on dual-branch strategy and attention-in-attention transformer structure.

	1									
Models	ATAB /AFAB	AHA	PESQ	STOI(%)	CSIG	CBAK	COVL			
Unprocessed	_	_	1.97	92.1	3.35	2.44	2.63			
Single-Branch approaches										
MMB-ATFAT	\checkmark \checkmark	×	3.05	94.6	4.37	3.53	3.71			
MMB-AIAT	$\sqrt{1}$	\checkmark	3.11	94.9	4.45	3.60	3.79			
CRB-ATFAT	$\sqrt{1}$	×	3.07	94.5	4.40	3.52	3.72			
CRB-AIAT	\checkmark \checkmark	\checkmark	3.15	94.7	4.48	3.54	3.81			
Dual-Branch approaches										
DB-ATAT	√/X	×	2.82	94.2	4.17	3.29	3.47			
DB-AFAT	XIV	×	2.93	94.4	4.28	3.31	3.63			
DB-ATFAT	V IV	×	3.18	95.0	4.50	3.68	3.86			
DB-AIAT	$\sqrt{1}$	\checkmark	3.31	95.6	4.61	3.75	3.96			

(c) CRB-AIAT (pesq=2.85)

(d) DB-AIAT (pesq=3.19)

Fig 7: Visualization of the spectrograms.

- The proposed attention-in-attention transformer significantlt improve speech quality.
- Merging two branches can collaboratively facilitate the spectrum recovery from the complementary perspective.

Proposed Method

Experiments and Analysis

- We propose a dual-branch transformer-based method to collaboratively recover the clean complex spectrum from the complementary perspective.
- A magnitude masking branch (MMB) is designed to coarsely estimate the magnitude spectrum of clean speech, and the residual spectral details are derived in parallel by a complex refining branch (CRB).
- We propose an attention-in-attention transformer (AIAT) to capture long-range temporal-frequency dependencies and aggregate global hierarchical contextual information
- Experimental results show that DB-AIAT yields state-of-the-art performance (3.31 PESQ, 95.6% STOI and 10.79dB SSNR) over previous advanced systems with a relatively small model size (2.81M).