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Summary
• We propose a novel system, dubbed Cycle-in-Cycle GAN, to handle speech enhancement when the training noisy-clean data

pairs are mismatched.
• Inspired by the decoupling-style concept, we decouple the difficult target w.r.t. original spectrum optimization and use two

CycleGANs to jointly estimate the spectral magnitude and phase information in a stage-wise manner.
• In the first stage, we pretrain a magnitude CycleGAN to coarsely estimate the spectral magnitude of clean speech. In the

second stage, we incorporate the pretrained CycleGAN with a complex-valued CycleGAN as a cycle-in-cycle structure.
• Experimental results demonstrate that the proposed approach significantly outperforms previous baselines under non-

parallel training.

Introduction
Non-parallel single-channel speech enhancement:

• Standard DNN-based supervised SE approaches always need numerous paired clean-noisy samples to conduct supervised
training and improve the generalization.

• In some real scenarios, it is troublesome to record parallel clean-noisy pairs, and we can only obtain clean speech that
mismatches the source noisy speech.

• cycle-consistent GAN (CycleGAN) has been developed to conduct unsupervised SE by using adversarial loss, cycle-
consistency loss and identity-mapping loss.

• Due to the severe mismatch between input and target, previous CylceGAN based methods only focus on magnitude spec-
trum estimation and remain the noisy phase unaltered.
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Figure 1: System flowchart
of CinCGAN. The magnitude
and complex cycle are shown
in the yellow and blue dotted
boxes, respectively.

• As Figure. 1(a) and (b) show, the proposed CinCGAN consists of a forward noisy-clean-noisy cycle and a backward clean-
noisy-clean cycle. In the forward cycle, the enhancement procedure can be divided into two steps. First, we decouple the
complex spectrum into spectral magnitude and phase, and only the amplitude is processed. Subsequently, the estimated
spectral magnitude and the original phase are fed it into CCGAN to estimate both real and imaginary parts.
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Figure 1: (a) The diagram of the magnitude
generators in MCGAN. (b) The diagram of the
complex generators in CCGAN.

• As Figure 2(a) and (b) illustrate, both magnitude and complex generators adopt convolutional encoder-decoder topology,
and multiple adaptive time-frequency attention (ATFA) modules and an adaptive hierarchical attention (AHA) module are
inserted for temporal modeling.

• In the first step, we pretrain MCGAN alone with the same relativistic adversarial loss, cycle-consistency loss, and identity
mapping loss until convergence. Then, we jointly fine-tune MCGAN and CCGAN with the same losses, which can be
expressed as: LMCGAN = LRadv(Gmc

X→Y, Dmc
Y ) + LRadv(Fmc

Y→X , Dmc
X )

+λcycleLcycle(Gmc
X→Y, Fmc

Y→X) + λidLid(Gmc
X→Y, Fmc

Y→X)
(1)

Experiments
Datset:

• The dataset we chosen is a selection of the Voice Bank corpus with 28 speakers for training and another 2 unseen speakers
for testing

• The training set consists of 11,572 mono audio samples, while the test set contains 824 utterances.
• For the training set, audio samples are mixed together with one of the 10 noise types (i.e., two artificial and eight real noise

from the DEMAND database. The testing utterances are created with 5 unseen test-noise types from the DEMAND.
Implementation Setup

• The Hanning window of length 32ms is applied, with 75% overlap between adjacent frames. The 512-point STFT is utilized,
leading to a 257-D spectral feature.

• We conduct the power compression toward the spectral magnitude while leaving the phase unaltered, and the optimal
compression coefficient is set to 0.5.

• We randomly crop a fixed-length segment (i.e., 108 frames) from a randomly selected noisy audio file as the input, while the
target is a randomly selected clean audio file which is different from the input audio.

• The training process is divided in two steps and the overall loss function can be expressed as:

LCinCGAN = γLMCGAN + LCCGAN (2)

Comparison results & analysis
Table 1: Experimental results among different models under unpaired data.

Methods Feature type Magnitude Complex PESQ STOI(%) CSIG CBAK COVL SegSNR DNSMOSfc bc fc bc
Unprocessed – – – – – 1.97 92.1 3.35 2.44 2.63 1.68 3.02

GAN-based methods
MGAN Magnitude × × × × 2.03 91.6 3.54 2.78 2.72 5.28 2.72
MGAN+fc Magnitude ✓ × × × 2.58 92.8 3.81 3.03 3.19 5.28 3.26
CGAN RI components × × × × 1.86 88.9 3.17 2.62 2.64 2.98 2.63
CGAN+fc RI components × × ✓ × 2.32 91.2 3.48 2.74 3.18 4.67 3.04

Proposed CycleGAN-based Systems
MCGAN Magnitude ✓ ✓ × × 2.67 93.2 3.86 3.20 3.21 7.23 3.47
CCGAN RI components × × ✓ ✓ 2.56 92.1 3.67 3.10 3.16 5.38 3.42
CinCGAN (I) Magnitude + RI ✓ × ✓ × 2.70 93.4 3.93 3.24 3.25 7.34 3.44
CinCGAN (II) Magnitude + RI ✓ ✓ ✓ × 2.77 93.6 3.96 3.02 3.30 4.49 3.49
CinCGAN (III) Magnitude + RI ✓ × ✓ ✓ 2.73 93.5 3.94 3.27 3.29 7.98 3.51
CinCGAN (IV) Magnitude + RI ✓ ✓ ✓ ✓ 2.84 94.1 4.10 3.36 3.37 8.91 3.53

Table 2: Comparison with other GAN and Non-GAN based systems under standard paired data
Methods Feature type PESQ STOI(%) CSIG CBAK COVL
Unprocessed – 1.97 92.1 3.35 2.44 2.63

GAN-based Systems
SEGAN Waveform 2.16 92.5 3.48 2.94 2.80
MMSEGAN Gammatone 2.53 93.0 3.80 3.12 3.14
SERGAN Waveform 2.51 93.7 3.78 3.23 3.16
CP-GAN Waveform 2.64 94.0 3.93 3.29 3.28
MetricGAN Magnitude 2.86 – 3.99 3.18 3.42
CRGAN Magnitude 2.92 94.0 4.16 3.24 3.54
SASEGAN Waveform 2.36 93.5 3.54 3.08 2.93

Non-GAN based Systems
Wave-U-net Waveform 2.64 – 3.56 3.08 3.09
DFL-SE Waveform – – 3.86 3.33 3.22
CRN-MSE Magnitude 2.61 93.8 3.78 3.11 3.24
GCRN RI components 2.51 94.0 3.71 3.24 3.09
DCCRN RI components 2.68 93.9 3.88 3.18 3.27
TFSNN Waveform 2.79 – 4.17 3.27 3.49

Proposed CycleGAN-based approaches
MCGAN Magnitude 2.74 93.6 3.96 3.25 3.29
CCGAN RI components 2.60 92.8 3.82 3.12 3.20
CinCGAN Magnitude+ RI 2.86 94.4 4.18 3.38 3.42

Conclusions
• This paper proposes a novel Cycle-in-Cycle GAN dubbed CinCGAN to jointly recover the spectral magnitude and phase

information of clean speech for non-parallel speech enhancement.
• The proposed system surpasses previous state-of-the-art non-parallel GAN based speech enhancement systems, indicating

the superiority of the cycle-in-cycle paradigm under mismatched noisy-clean pairs.
• When experiments are conducted on standard parallel data, the proposed approach also demonstrates its effectiveness in

improving speech quality and reducing speech distortion.


