Recent deep networks have achieved
good performance on a variety of 3d
points classification tasks. However,
these models often face challenges in
“‘wild tasks” where there are considerable
differences between the labeled
training/source data collected by one
Lidar and unseen test/target data
collected by a different Lidar.
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Experiments show that our approach
performs better than state-of-the-art UDA
methods in three popular 3D object/scene
datasets

Fig. 1. Point clouds acquired from different sensors and being
misclassified
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Our model architecture consists of four parts: generator, latent reconstruction
module, discriminator, and feature encoder/decoder.

In the training, source domain object and target domain object will go through a shared
encoder. The encoded features from source domain will be sent to the generator and a
discriminator tries to distinguish features from generator or target domain. For adding
multimodal information to the model, we also have Gaussian samples z for latent
condition input to the generator. To force the generator to use the Gaussian samples z
,we introduce a VAE encoder to recover z from the synthetic output. In addition, in
order to enhance the quality of output object from G, we have an additional
discriminator, a classifier C in training the model.

To reconstruct the shape of point clouds object we choose Earth Mover’s Distance
(EMD) to measure the distance between reconstructed object and input object. So that
we can restrict the synthetic outputs and make it close to the input's shape. But we do
not want the synthetic object to having the exact shape of input. Because we are
building a synthetic dataset which means the variety is also significant. So we bring a
random sampled variable z into our model and a Variational Autoencoder (VAE) is
trained to encode synthetic objects to recover latent input vector, encouraging

the use of conditional mode input z.

Quantitative classification results (%) on PointDA-10 Dataset

M—S M-=§* S—-M S§S-=8* §*~>M S§S*=§ Avg

w/o Adapt 42.5 223 39.9 235 34.2 469 349
MMD[19] 57.5 27.9 40.7 26.7 47.3 548 425
DANNI[4] 58.7 290.4 42.3 30.5 48.1 56.7 442
ADDAJS] 61.0 30.5 40.4 29.3 48.9 51.1 435
MCDI6] 62.0 31.0 41.4 313 46.8 59.3 453
PointDAN[7]  62.5 31.2 41.5 M3 46.9 59.3 455
Ours 62.8 36.5 41.9 31.6 50.4 65.7 48.1
Supervised 90.5 53.2 86.2 53.2 86.2 90.5 76.6

M means ModelNet and S denotes ShapeNet while S* represents ScanNet.

We consider six types of adaptation scenarios which are M—S, M — S*, S —»M,
S —» S*% S*>M and S*— S, where M, S and S* represent subset of Modelnet,
Shapenet and Scannet respectively.
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Ablation Study
Table 2. Ablation analysis
AE L C M-S M-=§8* S—-M S—58* S* M §*=S8  Avg
w/o Adapt 42.5 22.3 39.9 23.5 34.2 46.9 349
only AE Vv 59.5 33.5 34.2 16.1 43.3 554 403
AE+L v 62.6 34.1 40.4 29.1 49.6 64.3 46.7
GFA v Vv v 628 36.5 41.9 31.6 50.4 65.7 48.1
Supervised 90.5 532 86.2 53.2 86.2 90.5 76.6

AE means use autoencoder with reconstruction loss in model ,L. denotes latent space reconstruction
with VAE | C represents the additional discriminator, a classifier.

From Table2 , we could see the latent space reconstruction play a important role, the
classifier’'s performance significantly increases in all six scenarios after adding the
latent space reconstruction L
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Conclusion

We have proposed a novel generative approach to unsupervised domain adaptation in the 3D
classification task. The basic idea is to transfer source training data into the style of target domain rather
than selecting domain invariant feature or implementing feature alignment. Furthermore, we
implemented latent reconstruction module and an addition discriminator for enhancing the performance



