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q Standard XLSR model suffers from the 
language interference problem
Ø Lacking language specific modeling ability

Ø Limited model capacity

q We propose a sparse sharing sub-networks 

based language adaptive training approach

q The proposed S3Net achieves 9.8%/7.4% 

relative improvements over XLSR base/large, 

without requiring additional learnable params

Conclusion and Future Work

Language adaptive pre-training with S3Net

q S3Net alleviates language interference problem

q Two different pruning strategies are explored: TE & LTH

q S3Net outperforms other adaptation methods while 

requiring fewer parameters

Future Work:

qStructured sparsity and N:M sparsity for network 

acceleration

For pre-training and finetuning, we follow the 
setup in XLSR paper:
Ø We use Common Voice dataset for pre-training
Ø We adopt CTC criterion and evaluate the 

multilingual performance of pre-trained model

Model #Param
CV-Eval

High Low Avg
XLSR-10 95M 12.9 15.0 14.3
+ Gating Network 95M 12.2 14.7 13.9
+ Adapter 143M 11.5 14.1 13.2
S3Net-LTH 95M 10.6 14.0 12.9
XLSR-10 (Large) 317M 10.8 13.0 12.2
+ Gating Network 317M 10.4 12.8 12.0
+ Adapter 444M 10.4 12.9 12.1
S3Net-LTH (Large) 317M 9.0 12.5 11.3

Training procedure of the proposed S3Net:
(a) XLSR pre-training (Optional)
(b) Extracting subnet for each language
Ø Each subnet shall be able to maintain the 

full network’s accuracy
(c) Language adaptive training with S3Net
Ø Sparse sharing structure automatically 

distributes both shared and language 
specific parameters at each layer
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Sparse Sharing Sub-networks Pruning rate curve

Extracting subnets with LTH
Ø Start from a pre-trained XLSR model or from

scratch, denote the starting point as 𝜃
Ø For each language 𝑙, train model 𝜃 with

specific language data 𝐷! for a few steps to 
get language specific model $𝜃!

Ø One-shot magnitude pruning on $𝜃!, those 
parameters with lowest magnitude are pruned 
out, the structure is denoted with a binary 
mask 𝑚!, with 𝜃! = 𝑚!⨀𝜃

Ø One can also apply iterative pruning strategy 
for a more accurate subnet

Extracting subnets with TE
The importance of a parameter can be quantified by 
the error induced by removing it:

ℐ"! = [ℒ 𝐷! , 𝜃 − ℒ 𝐷! , 𝜃|𝜃" = 0 ]#

The above equation can be approximated with first 
order Taylor Expansion:

ℐ"! ≈ (𝑔"!𝜃")#

where 𝑔"! =
$ℒ &!,(
$("

is the gradient for 𝜃" that can 
be efficiently calculated with backward propagation

Once we obtain all masks 𝑚), 𝑚#, … ,𝑚*, we apply 
language adaptive training:
Ø Each batch only contain utterances from one 

language
Ø Multilingual batches are sampled with a 

multinomial distribution: 𝑝!~(
+!
,
)-

Ø For each batch, only 𝜃! = 𝑚!⨀𝜃 participate the 
forward and backward calculation 

Extracting Sub-networks
We experiment with two approaches of extracting 
sparse sub-networks:
Ø Lottery Ticket Hypothesis (Accurate!)
Ø First Order Taylor Expansion (Efficient!)

Language Adaptive Training 

ü S3Net-LTH models perform better than S3Net-TE, achieve 9.8%/7.4% relative improvements over XLSR models
ü S3Net achieves more improvements on high resource languages, with 17.8%/16.7% improvements for base/large

Comparison with other adaptation methods

Model Type Strategy
CV-Eval

High Low Avg
XLSR-10 N/A N/A 12.9 15.0 14.3

S3Net

Global LTH 10.8 14.0 13.0
Global Random 14.2 16.9 16.0

Layerwise TE 12.1 14.6 13.8
Layerwise LTH 10.6 14.0 12.9

Ablation studies

ü S3Net-LTH outperforms other adaptation methods 
while requiring fewer parameters

ü Layerwise pruning slightly outperforms global 
pruning

ü Random pruning demonstrates the effectiveness of 
proposed methods


