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» One can also apply iterative pruning strategy
for a more accurate subnet

v S3Net-LTH models perform better than S3Net-TE, achieve 9.8%/7.4% relative improvements over XLSR models

v S3Net achieves more improvements on high resource languages, with 17.8%/16.7% improvements for base/large

relative improvements over XLSR base/large,

without requiring additional learnable params

Extracting subnets with TE Comparison with other adaptation methods
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Sparse Sharing Sub-networks
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S3Net-LTH outperforms other adaptation methods
while requiring fewer parameters
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language adaptive training:

Training procedure of the proposed S3Net: » Each batch only contain utterances from one

Conclusion and Future Work
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Future Work:

setup 1n XLSR paper:

Extracting Sub-networks

v Layerwise pruning slightly outperforms global

, 1 Structured sparsity and N:M sparsity for network
pruning

» We use Common Voice dataset for pre-training

» We adopt CTC criterion and evaluate the
multilingual performance of pre-trained model

We experiment with two approaches of extracting
sparse sub-networks:

» Lottery Ticket Hypothesis (Accurate!)
» First Order Taylor Expansion (Efficient!)

v" Random pruning demonstrates the effectiveness of acceleration

proposed methods




