Language Adaptive Cross-lingual Speech Representation Learning with Sparse Sharing Sub-networks

ByteDance 字节跳行

Overview

- □ Standard XLSR model suffers from the language interference problem
 - Lacking language specific modeling ability
 - Limited model capacity
- U We propose a sparse sharing sub-networks based language adaptive training approach
- □ The proposed S3Net achieves 9.8%/7.4% relative improvements over XLSR base/large, without requiring additional learnable params

Sparse Sharing Sub-networks

Training procedure of the proposed S3Net:

- (a) XLSR pre-training (**Optional**)
- (b) Extracting subnet for each language
 - Each subnet shall be able to maintain the full network's accuracy
- (c) Language adaptive training with S3Net
 - Sparse sharing structure automatically distributes both shared and language specific parameters at each layer

Extracting Sub-networks

We experiment with two approaches of extracting sparse sub-networks:

- Lottery Ticket Hypothesis (Accurate!)
- First Order Taylor Expansion (Efficient!)

Experiments

Yizhou Lu, Mingkun Huang, Xinghua Qu, Pengfei Wei, Zejun Ma Speech & Audio Team, ByteDance Al Lab

Extracting subnets with LTH

- Start from a pre-trained XLSR model or from scratch, denote the starting point as θ
- \succ For each language *l*, train model θ with specific language data D^{l} for a few steps to get language specific model $\hat{\theta}^l$
- > One-shot magnitude pruning on $\hat{\theta}^l$, those parameters with lowest magnitude are pruned out, the structure is denoted with a binary mask m^l , with $\theta^l = m^l \odot \theta$
- > One can also apply iterative pruning strategy for a more accurate subnet

Extracting subnets with TE

The importance of a parameter can be quantified by the error induced by removing it:

$$\mathcal{I}_{i}^{l} = [\mathcal{L}(D^{l}, \theta) - \mathcal{L}(D^{l}, \theta | \theta_{i} = 0)]^{2}$$

The above equation can be approximated with first order Taylor Expansion:

$$\mathcal{I}_i^l \approx (g_i^l \theta_i)^2$$

where $g_i^l = \frac{\partial \mathcal{L}(D^l, \theta)}{\partial \theta_i}$ is the gradient for θ_i that can be efficiently calculated with backward propagation

Language Adaptive Training

- Once we obtain all masks $m_1, m_2, ..., m_L$, we apply language adaptive training:
- Each batch only contain utterances from one language
- Multilingual batches are sampled with a multinomial distribution: $p_l \sim (\frac{n_l}{N})^{\alpha}$
- > For each batch, only $\theta^l = m^l \odot \theta$ participate the forward and backward calculation
- For pre-training and finetuning, we follow the setup in XLSR paper:
- We use Common Voice dataset for pre-training
- > We adopt CTC criterion and evaluate the multilingual performance of pre-trained model

Mode

- Number of data XLSR-1
 - S3Net-
 - S3Net-L
- **XLSR-10 (L** S3Net-TE (S3Net-LTH

Comparison

Mode

XLSR-10

- + Gating Net
- + Adapter
- S3Net-LTH
- XLSR-10 (Lai
- + Gating Net
- + Adapter
- S3Net-LTH (

Ablation studies

XLSR-10

S3Net

- pruning
- proposed methods

el	es	fr	it	ky	nl	ru	SV	tt	zh	Avg
audio	168h	353h	90h	17h	29h	55h	3h	17h	50h	-
LO	10.8	12.8	15.1	8.5	15.4	11.8	22.1	8.1	24.2	14.3
TE	9.9	12.0	14.4	7.8	14.7	11.3	22.1	7.7	23.9	13.8
.TH	8.7	10.8	12.4	7.5	14.1	10.1	22.0	7.2	22.9	12.9
.arge)	9.0	10.6	12.7	6.8	12.8	10.1	19.9	6.6	21.5	12.2
Large)	8.4	10.5	12.4	6.7	12.5	10.1	19.6	6.3	21.6	12.0
(Large)	7.3	9.2	10.4	6.3	12.1	9.4	19.5	6.1	21.5	11.3

✓ S3Net-LTH models perform better than S3Net-TE, achieve 9.8%/7.4% relative improvements over XLSR models ✓ S3Net achieves more improvements on high resource languages, with 17.8%/16.7% improvements for base/large

n	with	other	adaptation	methods
		other	auaptation	memous

	#Daram	CV-Eval				
	#Palalli	High	Low	Avg		
	95M	12.9	15.0	14.3		
twork	95M	12.2	14.7	13.9		
	143M	11.5	14.1	13.2		
	95M	10.6	14.0	12.9		
rge)	317M	10.8	13.0	12.2		
twork	317M	10.4	12.8	12.0		
	444M	10.4	12.9	12.1		
Large)	317M	9.0	12.5	11.3		

S3Net-LTH outperforms other adaptation methods while requiring fewer parameters

Tupo	Stratogy	CV-Eval				
туре	Strategy	High	Low	Avg		
N/A	N/A	12.9	15.0	14.3		
Global	LTH	10.8	14.0	13.0		
Global	Random	14.2	16.9	16.0		
ayerwise	TE	12.1	14.6	13.8		
ayerwise	LTH	10.6	14.0	12.9		

✓ Layerwise pruning slightly outperforms global

✓ Random pruning demonstrates the effectiveness of

Conclusion and Future Work

- Future Work:
- acceleration

#1773

Language adaptive pre-training with S3Net □ S3Net alleviates language interference problem Two different pruning strategies are explored: TE & LTH □ S3Net outperforms other adaptation methods while requiring fewer parameters

□ Structured sparsity and N:M sparsity for network

