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Motivation: Limited Memory Bandwidth

»» Large CNN model is hard to deploy on edge device

< Data movement is more expensive than computation

% Data movement from/to off-chip memory dominates energy footprint

% Ex. in GoogLeNet, 68% of energy consumption is due to data movement [1]

MAC/cycle
Slope = BW to PEs PE M PE
) ¢
peak Number of PEs Buffer PE p ALU [e== fetch data to run
perf. a MAC here [2]
Normalized Energy Cost’
ALU 1x (Reference)
| | 15 -10s kB
| > MACldata NoC: 100s - 1000s PEs | PE | ALU
l l [2] 100s - 1000s kB
BW Compute DRAM ALU N 200
Bounded Bounded [1 ]
PE : Processing Element BW : Bandwidth MAC: multiply—accumulate operation

Require activation compression to reduce memory band\)w\@/ﬂ
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Activation Compression

neompre s ML T O T T T T [T TTTT T
% Lossless encoder I WL, 2 WL
[: Non-zero R e e \:? ‘
% RLE [3], ZVC [4], Huffman [5, 6] 1 = \ |
% Too sensitive to sparsity Cm\p\d \\ |
=» another method to further improve sparsity ? e
< Transformation-based AC B No-zere ®
<+ Project data to a domain suitable for @ c _
compression Can be folded omputation
o overhead
» Decorrelate data into important/ (T
. * BN TF "N TE! _/
unimportant components
» Enhance sparsity by discarding 0 01
unimportant information } i
% Discrete Cosine Transform (DCT) [7,8] VEC V?D
% Principal Component Analysis (PCA) [9, 10, 11] Memory

Transformation-based method projects data to domain with higher sparsity:) ) )
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Transformation-based AC

DCT 8 )
8%1%| Patch Static Sparsity in Feature Map

. . Fea‘tureMap - &
< 1D-DCT on channel dimension 1% @_’@—Q E—B—E_@
<* Channel domain is different et [",H;ffd"fi:drﬁﬁer iDCT .
from natural figure oD = azve \Nul
< Need to design a special 8°1%1 Mask
K mask for channel sorting J

W folded t}? conv. (offline) \

PCA on channel dimension
Data dependent
=>» enhance compressibility

% Eigenvalues helps to distinguish

important/unimportant channels
\ =» dimension reduction

L/ L/
0’0 0’0

QA

)) “) |

PCA is suitable for activation compression:. |
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Challenges

» Further dimension reduction results in severe performance degrade

% Enhance compression ratio but sacrifice accuracy disastrously
Eigenvalue of ResNetl8
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Accuracy vs. Bits per value

DR for compression
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Acc. drop sharply
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“* DR to same eigenvalue threshold for every layer is non-ideal
% The difference of distribution and size among each layer are ignored

Eigenvalue cumulatlve distibution |
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Proposed Compression-aware Projection
with Greedy Dimension Reduction

ReLU
A
)| .

.-
NS

Variable Length Coding (VLC)
)
Off-Chip DRAM
)

Dense/Convolutional Layer
v
BatchNormalization Layer
Variable Length Decoding (VLD)

“* Learnable Projection
% Replace PCA matrix with a trainable projection to compensate loss of DR
% Selection Metric for Greedy DR
% Reduce dimension with consideration of accuracy and compression tre  soft
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Learnable Projection

% Use knowledge distillation and hint learning to train PCA
transformation matrix without directly accessing labeled data
% Original model teach learnable projection model how to reconstruct well
% Mean square error for hidden layer activation (hint loss)
% The Kullback-Leibler divergence for output (knowledge distillation)

Teacher Network: Original Model

A1 Ay
—T—{ % |—*{ BN "/ >
\ v v J
Hint Loss Hint Loss
L 'y A
( )

Student Network: Learnable Projection

(= B Rl —

) P, p{m
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Selection Metric for Greedy
Dimension Reduction

Define a criterion to prioritize which layer for dimension reduction

. . Aaccurac
Selection metric: S = Y

Aactivation bits
!/

< Use eigenvalues to approximate accuracy [11]: Aaccuracy = g, d! /Zfl= 1 01c
% Aactivation bits = B (P, yxA) — B (P 41_; XA},
B(A) = #bits (VLC(Q(A)))

Lower S implies low accuracy drop and high activation bits reduction
% Jointly consider accuracy drop and bits reduction to achieve better tradeoff

Calculation of

X ) Projection P, ;/
Selection Metric

Projection P, ;, —_ {5,5,,..,5)} —

d; X d; d) X d,

Projection P, ;/

Remove Last
Row of P, ;s

dy=dy—1 C 19))
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Simulation Results (1/3)
Comparison between Different AC Methods

(a) MoblIeNetV2

(b) ResNet18 (c) VGG16
75 70 T T 1 T T
1
0 99 0.995 0.995 72k 0.995 ®
0.99 * 0.99 »
70 - * 69 r '
"
0.9 0.98
65 1 g 68 [ g
g [0.97 z70r 097
e e
3 3
60 g9 L69l
—#— Huffman L —#— Huffman —#— Huffman
551 —A—PCA[12] 66 —A—PCA[12] 68 | —A—PCA[12]
—+—LP w/ Threshold-based DR —+—LP w/ Threshold-based DR —+—LP w/ Threshold-based DR
——LP w/ Greedy DR —©—LP w/ Greedy DR —©—LP w/ Greedy DR
50 L 65 . . ! ; 67 . ! !
0.95 1.45 1. 95 2. 45 2. 95 3. 45 4.45 2 2.5 3 3.5 4 1.5 2

Average Bits per Value

Simulation Settings

Dataset ImageNet [12]
Model MobileNetV2/
ResNet18/VGG16
Weight Bit Width 8
Activation Bit Width 8
?ﬁf:g’:;f: [0.97,0.98,0.99 0.995,1]
Learning rate 0.001
# epoch 3

Average Bits per Value

25 3
Average Bits per Value

“* MobileNetV2 reaches 0.6% accuracy drop
with average 1.34 bits(5.97x) per value

“* ResNet18 reaches 0.4% accuracy drop with
average 2.75 bits(2.91x) per value

% VGG16 reaches 0.6% accuracy drop with
average 1.44 bits(5.56x) per value

P10
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Simulation Results (2/3)
Analysis of Dimension Reduction Distribution

VGG16 ResNet18 MobileNetV2
—— — 600 — ; . ; ; ; 1000 ; . ; .
I Original I Original I Original
[ Threshold-based DR [ Threshold-based DR > 900 | I Threshold-based DR
[ Greedy DR 1 500 - ] Greedy DR ’— I’— u; 800 | LI Greedy DR
700
400 -
o 2 600
[ (]
c <
& 300 S 500
L L
o o
3+ 3 400
200
300 i
200
100 L ||
- s LMLk MM AR ||
0 1 2 3 4 5 6 7 8 9 10 11 12 0 2 4 6 8 10 12 14 16 0 5 10 15 20 25 30
Layer Layer Layer

% Greedy DR tends to maintain higher #channels for deep layers than
threshold-based DR

% Compressing shallow layers leads to high bits reduction but low
accuracy drop

% For ResNet18, size of 1st layer activation is 112 x 112 while that of last
layeris 7 x 7 - |

I P11
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Simulation Results (3/3)
Computation Analysis under Different Threshold

RelLU

< Forward transform can be S L E—E | | -
folded into Conv. and BN T_é :g (b)DCTIPCAMatrlx g E g Inverse DCT/PCA Al
A 5_»5—’ _’;_’g‘_’é_‘ - —_—
¢ The only induced computation HIEIE R
come.s from |nver§e projection HLEES =8 Q *;%;—
“* Relative computation L] L eeaon || [ [

(Coriginal + CLearnable) t Cinverse Cr + Cy
— g XlOO% — olded nverse X].OO%
COriginal COriginal

____Model | 097 | 098 | 099 | 0995 | 1

MobileNetV2 59.7% 74.3% 89.5% 98.0% 126.8%
ResNet18 78.5% 86.4% 93.8% 99.3% 114.3%
VGG16 57.8% 70.0% 83.1% 92.2% 114.4%

< Our method needs less computation than PCA transformation method
% Even lower computation than original model L. F ) )
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Conclusion

% Our method reduces 2.91x~5.97x memory access with 0.4~0.7%
negligible accuracy drop on MobileNetV2/ResNet18/VGG16

“ Learnable projection can compensate compression loss without
directly accessing labeled data

% Selection metric for greedy DR
%+ Consider both bits reduction and accuracy drop simultaneously
% Decide DR ratio for each layer automatically

Dense/Convolutional Layer

BatchNormalization Layer

RelLU

@ —

DCT/PCA Matrix

o)

Learnable Projection

©

Greedy DR

Variable Length Coding (VLC)

v
Off-Chip DRAM
'

[

Variable Length Decoding (VLD)

Ay

Inverse DCT/PCA

-HHH-

Inverse Projection
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The end
Thank you for your listening
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