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Motivation: Limited Memory Bandwidth
v Large CNN model is hard to deploy on edge device
v Data movement is more expensive than computation

v Data movement from/to off-chip memory dominates energy footprint
v Ex. in GoogLeNet, 68% of energy consumption is due to data movement [1]

PE : Processing Element    BW : Bandwidth MAC: multiply–accumulate operation 

Require activation compression to reduce memory bandwidth!

[2]

[2]

[1]
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Activation Compression
v Lossless encoder

v RLE [3], ZVC [4], Huffman [5, 6]
v Too sensitive to sparsity

è another method to further improve sparsity ?
v Transformation-based AC

v Project data to a domain suitable for
compression
Ø Decorrelate data into important/ 

unimportant components
Ø Enhance sparsity by discarding 

unimportant information
v Discrete Cosine Transform (DCT) [7,8]
v Principal Component Analysis (PCA) [9, 10, 11]

Transformation-based method projects data to domain with higher sparsity! 

L
Computation

overhead

J
Can be folded
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Transformation-based AC
DCT [8]

PCA [9]

v 1D-DCT on channel dimension
v Channel domain is different

from natural figure
v Need to design a special 

mask for channel sorting

v PCA on channel dimension
v Data dependent 

è enhance compressibility
v Eigenvalues helps to distinguish 

important/unimportant channels
è dimension reduction 

PCA is suitable for activation compression!
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v Further dimension reduction results in severe performance degrade
v Enhance compression ratio but sacrifice accuracy disastrously

v DR to same eigenvalue threshold for every layer is non-ideal
v The difference of distribution and size among each layer are ignored

Challenges
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Proposed Compression-aware Projection 
with Greedy Dimension Reduction 

v Learnable Projection 
v Replace PCA matrix with a trainable projection to compensate loss of DR

v Selection Metric for Greedy DR
v Reduce dimension with consideration of accuracy and compression trade-off
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Learnable Projection
v Use knowledge distillation and hint learning to train PCA 

transformation matrix without directly accessing labeled data
v Original model teach learnable projection model how to reconstruct well
v Mean square error for hidden layer activation (hint loss) 
v The Kullback-Leibler divergence for output (knowledge distillation)
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Selection Metric for Greedy 
Dimension Reduction 

v Define a criterion to prioritize which layer for dimension reduction 

v Selection metric: 𝑆 = ∆"##$%"#&
∆"#'()"'(*+ ,('-

v Use eigenvalues to approximate accuracy [11]: ∆𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = ⁄𝜎!,#!" ∑$%&
#!
"
𝜎!,$

v ∆𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 𝑏𝑖𝑡𝑠 = 𝐵 𝐏!,#!"×𝐀!
' − 𝐵 𝐏!,#!"(&×𝐀!

' ,

𝐵 𝐀 = #𝑏𝑖𝑡𝑠 𝑉𝐿𝐶 𝑄 𝐀

v Lower 𝑆 implies low accuracy drop and high activation bits reduction
v Jointly consider accuracy drop and bits reduction to achieve better tradeoff
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Simulation Settings
Dataset ImageNet [12]

Model MobileNetV2/
ResNet18/VGG16

Weight Bit Width 8

Activation Bit Width 8

Eigenvalue 
Threshold [0.97,0.98,0.99 0.995,1]

Learning rate 0.001

# epoch 3

v MobileNetV2 reaches 0.6% accuracy drop 
with average 1.34 bits(5.97x) per value

v ResNet18 reaches 0.4% accuracy drop with 
average 2.75 bits(2.91x) per value

v VGG16 reaches 0.6% accuracy drop with 
average 1.44 bits(5.56x) per value

Simulation Results (1/3)
Comparison between Different AC Methods
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Simulation Results (2/3)
Analysis of Dimension Reduction Distribution

v Greedy DR tends to maintain higher #channels for deep layers than
threshold-based DR

v Compressing shallow layers leads to high bits reduction but low 
accuracy drop
v For ResNet18, size of 1st layer activation is 112 x 112 while that of last 

layer is 7 x 7
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Simulation Results (3/3)
Computation Analysis under Different Threshold
v Forward transform can be 

folded into Conv. and BN
v The only induced computation

comes from inverse projection
v Relative computation

=
(*#$%&%'(! + *)*($'(+!*)+*,'-*$.*

*#$%&%'(!
×100% = */0!1*1 + *,'-*$.*

*#$%&%'(!
×100%

v Our method needs less computation than PCA transformation method
v Even lower computation than original model

Model 0.97 0.98 0.99 0.995 1
MobileNetV2 59.7% 74.3% 89.5% 98.0% 126.8%

ResNet18 78.5% 86.4% 93.8% 99.3% 114.3%

VGG16 57.8% 70.0% 83.1% 92.2% 114.4%



ACCESS IC LAB Graduate Institute of Electronics Engineering, NTU

P13

Conclusion
v Our method reduces 2.91x~5.97x memory access with 0.4~0.7%

negligible accuracy drop on MobileNetV2/ResNet18/VGG16
v Learnable projection can compensate compression loss without 

directly accessing labeled data 
v Selection metric for greedy DR 

v Consider both bits reduction and accuracy drop simultaneously 
v Decide DR ratio for each layer automatically
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The end

Thank you for your listening


