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We were interested in computing a mini-batch-capable end-to end algorithm to identify statistically independent components (ICA) in large scale and 
high-dimensional datasets. Current algorithms typically rely on pre-whitened data and do not integrate the two procedures of whitening and ICA 
estimation. Our online approach estimates a whitening and a rotation matrix with stochastic gradient descent on centered or uncentered data. We show 
that this can be done efficiently by combining Batch Karhunen-Löwe-Transformation with Lie group techniques. Our algorithm is recursion-free and can 
be organized as feed-forward neural network which makes the use of GPU acceleration straight-forward. Because of the very fast convergence of 
Batch KLT, the gradient descent in the Lie group of orthogonal matrices stabilizes quickly. The optimization is further enhanced by integrating ADAM, 
an improved stochastic gradient descent (SGD) technique from the field of deep learning. We test the scaling capabilities by computing the 
independent components of the well-known ImageNet challenge. Due to its robustness with respect to batch and step size, our approach can be used 
as a drop-in replacement for standard ICA algorithms where memory is a limiting factor.

High input dimensionality

Examples of the first 484 independent components estimated from the ImageNet dataset (1:2 · 10� examples) (left). Every tile represents a single 
column of the mixing matrix which is reshaped to 3 × 200 × 200 for illustration purpose. In Lie-ADAM, we used a learning rate of 0.01 and a batch 
size of 484. The model was trained with three runs through the dataset which took 3h on standard hardware with a single GPU. A schematic 
overview of the algorithm is shown on the right.

Convergence of the 100 × 100 (left) and 1000 × 1000 (right) 
covariance matrix ΣS pertaining to the largest eigenvalues to the 
identity matrix as measured by the Frobenius norm on the CIFAR10 
dataset (50.000 examples of size  3 × 32 × 32). As baseline, we 
show Singular Value Decomposition (SVD) which runs offline. 
Batch size was set to 100 and 1000, respectively.

High output dimensionality

Runtime and precision of the matrix exponential methods comparison 
between spectral exp(M), cayley(M), padé(M) for M ∼ N(0; 0:1) using 
PyTorch. Interestingly both the Cayley approximation 
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and the Padé algorithm give similar accuracies (10��) up to 500 
dimensions. However, for larger dimensions the Caley approximation 
shows large peaks.

The first plot shows the evolution of kurtosis of the computed ICs 
measured over iterations, the second plot over runtime for the 
STL10 dataset (10� examples of size 3 × 96 ×
96). The learning rates are 0.01 in the offline scenario, and 0.001 
for the stochastic scenario. The batch size and k is 484. 
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Every skew-symmetric matrix Θ can by related to an orthogonal matrix R computing the matrix exponential. SO(k) is a Lie group with a tangent 
space, called the Lie algebra �� k that can be used for gradient updates. The so-called gradient flow makes use of this and computes ICA with 
orthogonality constraints using Lie group techniques.

��� = �������

(Trivialization, whitening matrix and rotation matrix)

(1) Mutual information approximation using negentropy with � ⋅ = log cosh ⋅
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(2) Computing the gradient of negentropy w.r.t the Lie algebra:
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(3) Geodesic flow [4] using Plücker parametrization � and ADAM-optimization [2] :
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Evaluation

Key benefits of the algorithm

The proposed Lie-Adam approach offers  two computation modes: 
a) In offline mode, it works very similar to L-BFGS-based algorithms. 
a) in stochastic mode, it offers fast convergence rates while maintaining highly accurate solutions. 

Our approach allows us to formulate the ICA update equations as a standard neural network and by using b-sized mini-batches the space 
complexity of the entire pipeline for d-dimensional inputs and k components is limited to O(d(k+b)).
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