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Summary

Our method can distill the temporal knowledge from

attention weights of large transformer-based teacher models

to on-device student models of various architectures.

We design the attention distillation loss for the on-device

models by attaching a simple attention layer only at training

time to align the teacher and the student attention weights.

We conduct experiments on a real-world AED dataset

(FSD50K) and a noisy KWS dataset (background noise

injected to Google Speech Commands v2) to show the

effectiveness of our method.

Motivation

Why knowledge distillation (KD)? Compared to large models, im-

proving the performance of on-device models is challenging due

to the restricted computing resources in the mobile environment.

Many studies leverage KD to alleviate this problem by transferring

the knowledge from large models to on-device models.

Limitation of traditional KD Several studies focus on the knowledge

embedded in logits produced by the classification layer. However,

temporal information, which is known to be beneficial in audio tasks,

cannot be easily distilled when it is compressed into logits.

Limitation of transformer-based KDWith the success of the trans-

former, recent studies have focused on distilling the knowledge from

self-attention maps, preserving the temporal information. However,

those methods are limited to transformer-based architectures only,

alienating other on-device-friendly architectures such as convolu-

tional neural networks or recurrent neural networks.

Our goal

We aim to incorporate the temporal knowledge embedded in at-

tention weights of large transformer-based models into on-device

models with various types of architectures.

Teacher model We employ the XLSR-wav2vec 2.0 as our teacher

model, which is a large-scale transformer-based ASR model with

state-of-the-art performance on multilingual ASR.

Student model We consider the following on-device audio classifi-

cation models: a simple RNN-based model (LSTM-P), a CNN-based

model (TC-ResNet), a model that uses both CNN and RNN (CRNN),

a model including an attention mechanism (Att-RNN), and a multi-

head variant of Att-RNN (MHAtt-RNN).
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Figure 1:Illustration of our proposed method.
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Ourmethod: Temporal KD

Training the teacher model To perform audio classification, we at-

tach a fully-connected (FC) layer to the first feature output c1 of the

teacher model, similar to the fine-tuning of language models.

Extracting the teacher attention maps To extract the temporal

knowledge from the teacher model, we leverage self-attention maps

AT frommultiple transformer layers. The attention rollout technique

is applied to result in a single unified attention map.

Extracting the student attention maps We integrate the attention

mechanism from every student model except Att-RNN and MHAtt-

RNN, only in training time. Medium context representation projec-

tion is used for the query q.

Minimizing the distance between attention maps We shrink the

teacher attention map by linear interpolation to match the dimen-

sion of student attention map. Then, the distance between the two

maps are minimized via the KL divergence: LKL = DKL(aS|aT ).
Final loss Classification loss LCLS and the KD loss LKL is jointly opti-

mized via λLKL + (1 − λ)LCLS, with a trade-off hyperparameter λ.

Results and Analysis

Model wav2vec 2.0 LSTM-P TC-ResNet CRNN Att-RNN MHAtt-RNN

w/o KD 0.5498 0.1141 0.1814 0.2789 0.2856 0.2647

w/ KD N/A 0.1300 0.1951 0.3053 0.3471 0.3317

Table 1:mAP performance comparison on the FSD50K dataset, a real-world multi-

label audio event detection (AED) dataset, with and without applying our KD loss.

L Model wav2vec 2.0 LSTM-P TC-ResNet CRNN Att-RNN MHAtt-RNN

2s
w/o KD 90.59 88.73 87.77 89.96 89.88 89.75

w/ KD N/A 89.31 88.08 90.06 91.67 91.75

4s
w/o KD 91.22 85.19 87.60 89.69 90.65 91.19

w/ KD N/A 89.08 88.33 90.21 91.98 92.12

6s
w/o KD 90.93 45.27 86.00 88.58 90.88 90.58

w/ KD N/A 85.58 86.85 89.88 91.19 91.67

8s
w/o KD 90.95 78.44 77.81 88.94 88.81 88.33

w/ KD N/A 82.19 85.79 89.79 90.98 91.79

Table 2:Test accuracy (%) performance comparison on the Noisy Speech Com-

mands v2 dataset. Best accuracies are in bold, and the performance of the stu-

dent models that outperform the teacher model is underlined. The dataset is con-

structed by inserting the existing keyword spotting (KWS) dataset, Speech Com-

mands v2, to the background speech noise of varying length L.
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Figure 2:Visualization of attention weights extracted from multiple models. We

input an arbitrary sample from the Noisy Speech Commands v2 dataset with 8

seconds noise. We plot the location of the one second keyword to all the plots.

Even though the teacher model is trained only with the classification label, at-

tention weights focuses on the keyword location. Also, all the on-device models

attend at similar positions, indicating that attention weights are accurately aligned.
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