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 Introduction to LDPC codes

๏ LDPC codes are well-known Error 
Correction Codes working on blocs,

- K information bits;

- N transmitted values, 

- (N-K) redundant values,

๏ The LDPC code structure is defined 
by a H matrix,

- Provides VN/CN involved in parity equations,

- Visually represented as a Tanner graph.

๏ State-of-the-art works for LDPC 
decoding are based on MP algorithm;

- Propagate message between CNs and VNs,

- MP algorithm is iterative.
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based decoding was shown to be comparable to or bet-
ter than the common iterative message passing (MP)
decoding [22]. However, LP techniques are too com-
plex in terms of computations and memory require-
ments [22–25] to be applicable. With the advance of the
Alternate Direction Method of Multipliers (ADMM)
technique [26], a significant improvement towards LP
LDPC decoding scalability and optimization is possi-
ble. Barman et al. in [27] presented a two-slice charac-
terization for the parity polytope and developed an e�-
cient Euclidean projection algorithm which is required
for ADMM-based LP decoding. Despite the fact that
ADMM is distributed and has strong convergence guar-
antees, current implementations do not meet through-
put standard requirements [28, 29].

This paper draws upon the work published in [30]. It
provides additional details about the ADMM approach
for LDPC decoding and it includes a new research result
from [31] which enables to avoid the Euclidean projec-
tion in the decoding process. Besides, a detailed analy-
sis of the computation parallelism levels and the poten-
tial performance bottlenecks is presented. Further soft-
ware optimizations of the decoder for multi and many
core platforms are described. Experiments on LDPC
codes from standards show that the optimized ADMM
decoder can achieve up to 30 Mbps. Its performance
features excel those of the first traditional LDPC de-
coders software implementations [6,7,12,32,33], though
they are still below the recent ones on multi-core plat-
forms [3, 18, 20]. This novel implementation paves the
way for a real-time software implementation.

The remainder of the paper is organized as follows:
in section 2, the formulation of LP decoding and its
ADMM representation and error correction performances
are reviewed. In section 3, the ADMM’s complexity is
depicted and compared with the usual MP approaches.
In section 4, a time profiling of the di↵erent optimized
blocks is presented. In section 5 the parallelism levels of
the algorithm and their application on the target archi-
tectures to get software improvements are described. In
section 6, some performance results on multi-core and
many-core targets are provided.

2 The ADMM Algorithm

2.1 Introduction

An LDPC code is a linear block code defined by a bi-
nary sparse parity-check matrix called H. Throughout
this paper, binary LDPC codes are considered. The H
matrix is N ⇥M with N the code length, K the num-
ber of information bits in N and M = (N �K) is the
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Fig. 1 Tanner graph representation.

number of redundant bits in the codeword. The H ma-
trix represents the existing links between the received
information V

i

and the parity equations C
j

.

H =

0

BB@

V0 V1 V2 V3 V4 V5 V6 V7

C0 1 1 1 0 0 0 0 0
C1 0 0 0 1 1 1 0 0
C2 1 0 0 1 0 0 1 0
C3 0 1 0 0 1 0 0 1

1

CCA (1)

The H matrix can be represented as a Tanner graph
as shown in Figure 1 where the variable nodes (VN) are
indexed by I = {1, ..., N} and the check nodes (CN) are
indexed by J = {1, ...,M}. It is also represented by a
parity check matrix H 2 FM⇥N

2 (M  N) having d
v

i

ones at each column i and d
c

j

ones at each row j, as in
Equation 1. Each ‘1’ in the parity check matrix at the
position (n,m) corresponds to an edge in the Tanner
graph that connects V

n

to C
m

, as shown on Figure 1.
LetN

v

(i) be the index of the set of neighbors of variable
node v

i

and N
c

(j) be the index of the set of neighbors
of check node c

j

. The d
c

j

⇥N binary transfer matrix T
j

selects from an N -vector the coordinates corresponding
to the d

c

j

neighboring variables of check j.

2.2 ADMM formulation for LDPC decoding

2.3 Introduction

Feldman et al. in [21] proposed an original decoding
algorithm for LDPC codes based on linear program-
ming. They imported the LDPC decoding to the sphere
of convex optimization by relaxing the optimal decod-
ing problem into a linear optimization one. Barman et

al. [27] demonstrated that the ML decoding problem
can be solved using the ADMM method [26] which suits
the distributed convex optimization. To this purpose,
the LP decoding problem is reformulated as in Equa-
tion 2.3 to fit the ADMM template given in [26]. The
check polytope P

d

c

j

is the convex hull of all binary vec-
tors of length d

c

j

with an even number of ones.

minimize �Tx (2)

subject to T
j

x = z
j

; z
j

2 P
d

c

j

8j 2 J .
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 Related works on LDPC decoding

๏ During the last decade, lots of works 
focused on LDPC codes. For instance :

- Find an « efficient » SPA approximation ,

‣ SPA algorithm is efficient but complex to implement,

‣ MS, OMS, NMS, 2NMS, lambda-min,  ANMS, etc.

- Reduce computation complexity through 
different computation schedules,

‣ Flooding, TDMP, conditional activation, etc.

- Efficient implementation of LDPC decoders,

‣ Hardware (ASIC, FPGA) for efficiency,

‣ Software (CPU & GPU) for flexibility.

๏ Linear Programming (LP) approach for 
LDPC decoding is a « recent » way.
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 LP decoding of LDPC codes

๏ Linear programming formulation of 
LDPC decoding problem,

- First, proposed by in [1],

- Huge memory & computation complexities,

- Limited to very short frames (N << 200),

๏ Interesting FER performance
- Especially in Error floors (Even against SPA),

- ML certificate when frame is successfully decoded 
(not decoded otherwise).

๏ Lower complexity formulation,
- Initial LP ADMM algorithm [2],
- Good FER performance ADMM-l2 against SPA [3],
- Reduced complexity s-ADMM-l2 [4]

๏ LP LDPC decoding is affordable for 
implementation purpose.

5

[1]  J.  Feldman,  Decoding  Error-Correcting  Codes  via  Linear 
Programming. PhD thesis, Massachussets Institute of Technology, 2003. 

Increase mainly according 
to N, N-K and deg(Ci) 
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 LP decoding of LDPC codes

๏ Linear programming formulation of 
LDPC decoding,

- First, proposed by in [1],
- Huge memory & computation complexities,
- Limited to very short frames (< 200 bits),

๏ Interesting FER performance
- Even against SPA algorithm,
- ML certificate when frame is successfully decoded 

(not decoded otherwise).

๏ Lower complexity formulation,
- Initial LP ADMM algorithm [2],

- Improved ADMM-l2 against SPA [3],

- Computation complexity reduction [4],

๏ LP LDPC decoding becomes now 
realistic for implementation purpose.

6

Algorithm 1 Flooding based ADMM-l2 penalized algorithm.
1: Kernel 1: Initialization
2: for all j 2 J , i 2 Nc(j) do
3: (z(0)

j )i = 0.5, (�(0)
j )i = 0, L(0)

ji = 0.5

4: end for
5: for all k = 1 ! (iter max) do
6: Kernel 2: Computation of messages V Ni ! CNj
7: for all i 2 I, j 2 Nv(i) do
8: t

(k)
i =

P
j2Nv(i)

(L(k�1)
ji ) � �i

µ

9: L

(k)
ij = ⇧[0,1]dv ( 1

dvi�2↵
µ
(t(k)

i � ↵
µ ))

10: end for
11: Kernel 3: Computation of messages CNj ! V Ni
12: for all j 2 J , i 2 Nc(j) do
13: (z(k)

j )i = ⇧Pdcj
(⇢L(k)

ij + (1 � ⇢)z(k�1)
j + �

(k�1)
j )

14: (�(k)
j )i = �

(k�1)
j + ⇢L

(k)
ij + (1 � ⇢)z(k�1)

j � z

(k)
j

15: L

(k)
ji = (z(k)

j )i � (�(k)
j )i

16: end for
17: end for
18: Kernel 4: Hard decision from soft-values
19: for all i 2 I do

20: ĉi =

"
P

(j2Nv(i))

L

(k)
ji

#
> 0.5

21: end for

where µ > 0 is the penalty parameter, � is the scaled dual variable.

An over-relaxation parameter ⇢ is added to the ADMM algo-
rithm in order to improve its convergence [15]. Besides, it is ob-
served that the ADMM-based LP decoder has worse error perfor-
mance than the MP decoder at low SNR values [25]. To address this
problem, Liu et al. proposed a penalized ADMM decoder which
adds a penalty term into the objective function of the LP formulation.
When l2 penalty terms are used, the objective function of problem
(1) is replaced with �Tx � ↵kx � 0.5k22. ↵ is a penalty parameter
that can be optimized in advance.

After simplifications, the ADMM-based decoding algorithm
with l2 penalty can be expressed in the form of an iterative MP
algorithm, as in Algorithm 1. Like other MP decoding algorithms,
this flooding based computation works out for the check updates
as well as for variable updates where all the nodes are computed
simultaneously. However, the amount of exchanged messages and
the VN and CN computation complexities are quite different. Sim-
ilar description of the flooding based LDPC decoding for Min-Sum
algorithm can be found in [24].

In Algorithm 1, ⇧[0,1]dv (a) is the Euclidean projection of the
vector a on [0, 1]dv while ⇧Pdcj

(b) is the Euclidean projection of
the vector b on the check polytope Pdcj

. ADMM LP decoding has
proven its efficiency as an error correction approach [15]. Figure 1
shows the frame error rate of the ADMM decoder over an AWGN
channel for two WiMAX standardized LDPC codes with different
rates compared with the traditional SPA decoder. In these simu-
lations, the maximum number of iterations for all the decoders is
200 which provides good error performance [15]. The parameters
of the ADMM-l2 penalized decoder are obtained by the parameter
generator given in [26]. It can be seen that the ADMM-l2 penalized
decoder performs better than the optimal SPA decoder. For exam-
ple, at FER=10�5, the performance gain for the ADMM-l2 decoder
is 0.3 dB for the 1152 ⇥ 288 code. The performance gain for the
ADMM-l2 decoder is 0.5 dB for the 576⇥ 288 code at FER=10�4.
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Fig. 1. FER comparison of ADMM-l2 penalized decoders with SPA
decoders on AWGN channel.

3. ALGORITHM MAPPING AND OPTIMIZATION

3.1. Target multi-core architecture

In this study, we focused mainly on developing an efficient imple-
mentation of the ADMM penalized decoding algorithm on multi-
core target architectures such as x86 processor. Indeed these pro-
cessors are designed essentially to support general purpose compu-
tations while providing parallel processing capabilities. Currently,
x86 processor cores provide two supplementary parallel program-
ing models: Single Instruction Multiple Data (SIMD) and Single
Instruction, Multiple Threads (SIMT). These programming models
enable high signal processing acceleration especially given the fact
that they are associated with the fast and large memory caches avail-
able in multi-core architectures. These architectures seem to be at
least as fast as GPU devices for LDPC decoding [24].

To reach the highest throughput performances, the ADMM pe-
nalized decoding algorihtm was first adapted to take advantage of
both SIMD and SIMT programming models. Then, the bottleneck
parts of the source code were restructured and optimized.

3.2. ADMM decoder profiling

Xishuo Liu, one of the authors of the first articles [14,25] on ADMM
for LDPC codes provides his source codes online [16] under open-
source license. His decoder description is not optimized for through-
put performances but acts as a functional demonstrator. The work
presented in this article initially took over his C++ ADMM decoder
implementation. Then it was slightly modified to include the latest
researches in the field [26] where the l2 penalization function intro-
duces different penalty parameters for variable nodes with different
degrees. It improves the decoding performances of the ADMM de-
coder compared with the SPA approach [25].

The ADMM decoding algorithm is MP-based. When compared
with the SPA decoding algorithm, the computation complexity of the
VNs and CNs seem to be higher due to the multiplications and divi-
sions in VNs and multiplications and projection in CNs. In order to
identify the hot spots in terms of computation complexity, a profil-
ing step of the application was done. Indeed, theoretical analysis is
complex for the ADMM decoder where some parts of the projection

[2] Xiaojie Zhang and Paul H.Siegel, “Efficient iterative LP decoding of LDPC codes 
with alternating direction method of multipliers,” IEEE International Symposium on 
Information Theory (ISIT), 2013.

[3] X. Jiao,  H. Wei,  J.  Mu, and C. Chen,  “Improved ADMM penalized decoder for 
irregular low-density parity-check codes,” IEEE Communications Letters, June 2015. 

[4]  H.  Wei,  X.  Jiao,  and J.  Mu, “Reduced-complexity linear  programming decoding 
based on ADMM for LDPC codes,” IEEE Communications Letters, June 2015. 
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The ADMM decoding algorithm
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 Formulation of the ADMM decoding algorithm

๏ The ADMM algorithm is a MP-based 
formulation of the LP problem,

- Proposed in [2] and correction improved in [3],
- Traditional flooding schedule,
- The key element is the Euclidian projection;
- Formulation maintains LP properties,

๏ Based on 4 distinct kernels
- Kernel 1, initializes the decoder;
- Kernel 2, processes all VNs;
- Kernel 3, processes all CNs;
- Kernel 4, takes hard decision;

๏ Kernels 2 and 3 are iterated k times 
(# iterations)

- Computation complexity is located there;

8
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The augmented Lagrangian of the LP problem with
scaled dual variable is:

L
µ

(x, z,�) = �Tx+
µ

2

X

j2J

kT
j

x� z
j

+ �
j

k22 �
µ

2

X

j2J

k�
j

k22,

(3)

where µ > 0 is the penalty parameter and � is the scaled
dual variable. The ADMM iterations for the problem
2.3 can be described as follows [31]:

xk+1 := argmin
x

(�Tx+
µ

2

X

j2J

kT
j

x� zk
j

+ �k

j

k22), (4)

zk+1
j

:= ⇧
P

d

(T
j

xk+1 + �k

j

), (5)

�k+1
j

:= �k

j

+ T
j

xk+1 � zk+1
j

, (6)

where ⇧
P

d

(a) is the Euclidean projection of the vector
a on the check polytope ⇧

P

d

.
It is observed that the ADMM-based LP decoder

has worse error performance than the Belief Propaga-
tion (BP) decoder at low signal to noise ratio (SNR)
values [27]. To improve error performance at low signal
to noise ratio (SNR) values, Liu et al. proposed a pe-
nalized ADMM decoder which adds a penalty term to
the objective function of the LP formulation of prob-
lem 2.3 so that it becomes: f(x) = �Tx+↵

P
i2I

g(x
i

).
The l2 penalty function is g(x) = �(x � 0.5)2, where
↵ is a penalty parameter that can be optimized o↵ line
thanks to the parameter optimizer proposed in [37] .
According to [38], all the penalized decoders are able
to overcome the low SNR disadvantages of LP decod-
ing while keeping an important aspect of LP decoding:
they are not observed to su↵er from an error floor.

After simplifications, the ADMM-based decoding al-
gorithm with l2 penalty can be expressed in the form
of an iterative message passing algorithm, as summa-
rized in Algorithm 1. In Algorithm 1, ⇧[0,1]dv (↵) is the
Euclidean projection of the vector ↵ on [0, 1]dv .

During the ADMM-based LDPC decoding process,
messages are exchanged along the Tanner graph edges.
The usual ADMM scheduling can be expressed as an
iterative message passing algorithm as formalized in Al-
gorithm 1, where �

i

represents the channel input LLR
and ĉ

i

corresponds to the decoded bit. The decoding
algorithm 1 is mainly composed of four computation
kernels where kernels 2 and 3 are computation inten-
sive. At the kth iteration, each variable i update com-
putation consumes the incoming messages z

(k�1)
j!i

and

�
(k�1)
j!i

from its CN
j

neighbors j 2 N
v

(i) (Algorithm 1,
line 7) as well as the channel information �

i

. Each VN
i

sends the same message L
(k)
i!j

to all its neighbor CNs
(Algorithm 1, line 8). Each CN

j

computes its outgoing

Algorithm 1 Flooding based ADMM -l2 Algorithm.
1: Kernel 1: Initialization
2: 8j 2 J , i 2 N

c

(j) : z(0)
j!i

= 0.5, �(0)

j!i

= 0
3: 8i 2 I : n

i

= �

i

µ

4: for all k = 1 ! q when stop criterion = false do

5: Kernel 2: For all variable nodes in the code
6: for all i 2 I, j 2 N

v

(i) do

7: t(k)

i

=
P

j2N

v

(i)

(z(k�1)

j!i

� �(k�1)

j!i

)

8: L(k)

i!j

= ⇧
[0,1]

( 1

d

v

i

�2

↵

µ

(t(k)

i

� n
i

� ↵

µ

))

9: end for

10: Kernel 3: For all check nodes in the code
11: for all j 2 J , i 2 N

c

(j) do

12: z(k)

j!i

= ⇧
P

d

c

j

[⇢L(k)

i!j

+ (1� ⇢)z(k�1)

j!i

+ �(k�1)

j!i

]

13: �(k)

j!i

= �(k�1)

j!i

+ ⇢L(k)

i!j

+ (1� ⇢)z(k�1)

j!i

� z(k)

j!i

14: end for

15: end for

16: Kernel 4: Hard decisions from soft-values

17: 8i 2 I : ĉ
i

=

 
P

j2N

v

(i)

L
i!j

!
> 0.5

messages using the received L
(k)
i!j

from VN
i

neighbors

i 2 N
c

(j) and its locally stored z
(k�1)
j!i

and �
(k�1)
j!i

from
previous iteration (Algorithm 1, lines 12 : 13). In Algo-
rithm 1, Kernels 2 and 3 are executed N ⇥ q times and
(N �K)⇥ q times, respectively, where q is the number
of decoding iterations. The syndrome checking which
is used to stop the decoding process once a valid code-
word is found, is executed after each decoding iteration.
The hard decisions ĉ

n

are obtained in kernel 4 which is
executed only once at the end of the decoding process.

Like traditional message-passing decoding algorithms1,
this flooding based computation works out for both CN
and VN updates where all the nodes can be computed
simultaneously. However, the number of exchanged mes-
sages and the VN and CN computations are di↵er-
ent from the usual LDPC decoding algorithms. For in-
stance, each VN receives two messages from each of its
neighbor CNs and produces a single message value that
is sent back to these CNs.

2.4 Euclidean Projection

In Algorithm 1, it is necessary to apply an Euclidean
projection on the parity polytope so as to get the up-
dated replica z. As already stated a parity polytope P

d

is the convex hull of all the binary vectors of length d

and an even Hamming weight. Barman et al. in [39] de-
veloped an e�cient projection algorithm based on the
so-called ”two-slice” representation of the parity poly-
tope. They show that for any vector in P

d

can be ex-

1 Similar description of the flooding based LDPC decoding
for Min-Sum algorithm can be found for instance in [6].

[2] Xiaojie Zhang and Paul H.Siegel, “Efficient iterative LP decoding of LDPC codes with 
alternating  direction  method  of  multipliers,”  IEEE  International  Symposium  on 
Information Theory (ISIT), 2013.

[3]  X.  Jiao,  H.  Wei,  J.  Mu,  and  C.  Chen,  “Improved  ADMM  penalized  decoder  for 
irregular low-density parity-check codes,” IEEE Communications Letters, June 2015. 
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 Formulation of the ADMM decoding algorithm

๏ The ADMM algorithm has a flooding-
based formulation of the LP problem,

- Proposed in [2] and correction improved in [3],
- Traditional flooding schedule,
- Based on Euclidian projection;
- Formulation maintains LP properties,

๏ Based on 4 distinct kernels
- Kernel 1, initializes the decoder;
- Kernel 2, processes all VNs;
- Kernel 3, processes all CNs;
- Kernel 4, takes hard decision;

๏ Kernels 2 and 3 are iterated k times 
(# iterations)

- Decoding computation complexity is located 
there;
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The augmented Lagrangian of the LP problem with
scaled dual variable is:

L
µ

(x, z,�) = �Tx+
µ

2

X

j2J

kT
j

x� z
j

+ �
j

k22 �
µ

2

X

j2J

k�
j

k22,

(3)

where µ > 0 is the penalty parameter and � is the scaled
dual variable. The ADMM iterations for the problem
2.3 can be described as follows [31]:

xk+1 := argmin
x

(�Tx+
µ

2

X

j2J

kT
j

x� zk
j

+ �k

j

k22), (4)

zk+1
j

:= ⇧
P

d

(T
j

xk+1 + �k

j

), (5)

�k+1
j

:= �k

j

+ T
j

xk+1 � zk+1
j

, (6)

where ⇧
P

d

(a) is the Euclidean projection of the vector
a on the check polytope ⇧

P

d

.
It is observed that the ADMM-based LP decoder

has worse error performance than the Belief Propaga-
tion (BP) decoder at low signal to noise ratio (SNR)
values [27]. To improve error performance at low signal
to noise ratio (SNR) values, Liu et al. proposed a pe-
nalized ADMM decoder which adds a penalty term to
the objective function of the LP formulation of prob-
lem 2.3 so that it becomes: f(x) = �Tx+↵

P
i2I

g(x
i

).
The l2 penalty function is g(x) = �(x � 0.5)2, where
↵ is a penalty parameter that can be optimized o↵ line
thanks to the parameter optimizer proposed in [37] .
According to [38], all the penalized decoders are able
to overcome the low SNR disadvantages of LP decod-
ing while keeping an important aspect of LP decoding:
they are not observed to su↵er from an error floor.

After simplifications, the ADMM-based decoding al-
gorithm with l2 penalty can be expressed in the form
of an iterative message passing algorithm, as summa-
rized in Algorithm 1. In Algorithm 1, ⇧[0,1]dv (↵) is the
Euclidean projection of the vector ↵ on [0, 1]dv .

During the ADMM-based LDPC decoding process,
messages are exchanged along the Tanner graph edges.
The usual ADMM scheduling can be expressed as an
iterative message passing algorithm as formalized in Al-
gorithm 1, where �

i

represents the channel input LLR
and ĉ

i

corresponds to the decoded bit. The decoding
algorithm 1 is mainly composed of four computation
kernels where kernels 2 and 3 are computation inten-
sive. At the kth iteration, each variable i update com-
putation consumes the incoming messages z

(k�1)
j!i

and

�
(k�1)
j!i

from its CN
j

neighbors j 2 N
v

(i) (Algorithm 1,
line 7) as well as the channel information �

i

. Each VN
i

sends the same message L
(k)
i!j

to all its neighbor CNs
(Algorithm 1, line 8). Each CN

j

computes its outgoing

Algorithm 1 Flooding based ADMM -l2 Algorithm.
1: Kernel 1: Initialization
2: 8j 2 J , i 2 N

c

(j) : z(0)
j!i

= 0.5, �(0)

j!i

= 0
3: 8i 2 I : n

i

= �

i

µ

4: for all k = 1 ! q when stop criterion = false do

5: Kernel 2: For all variable nodes in the code
6: for all i 2 I, j 2 N

v

(i) do

7: t(k)

i

=
P

j2N

v

(i)

(z(k�1)

j!i

� �(k�1)

j!i

)

8: L(k)

i!j

= ⇧
[0,1]

( 1

d

v

i

�2

↵

µ

(t(k)

i

� n
i

� ↵

µ

))

9: end for

10: Kernel 3: For all check nodes in the code
11: for all j 2 J , i 2 N

c

(j) do

12: z(k)

j!i

= ⇧
P

d

c

j

[⇢L(k)

i!j

+ (1� ⇢)z(k�1)

j!i

+ �(k�1)

j!i

]

13: �(k)

j!i

= �(k�1)

j!i

+ ⇢L(k)

i!j

+ (1� ⇢)z(k�1)

j!i

� z(k)

j!i

14: end for

15: end for

16: Kernel 4: Hard decisions from soft-values

17: 8i 2 I : ĉ
i

=

 
P

j2N

v

(i)

L
i!j

!
> 0.5

messages using the received L
(k)
i!j

from VN
i

neighbors

i 2 N
c

(j) and its locally stored z
(k�1)
j!i

and �
(k�1)
j!i

from
previous iteration (Algorithm 1, lines 12 : 13). In Algo-
rithm 1, Kernels 2 and 3 are executed N ⇥ q times and
(N �K)⇥ q times, respectively, where q is the number
of decoding iterations. The syndrome checking which
is used to stop the decoding process once a valid code-
word is found, is executed after each decoding iteration.
The hard decisions ĉ

n

are obtained in kernel 4 which is
executed only once at the end of the decoding process.

Like traditional message-passing decoding algorithms1,
this flooding based computation works out for both CN
and VN updates where all the nodes can be computed
simultaneously. However, the number of exchanged mes-
sages and the VN and CN computations are di↵er-
ent from the usual LDPC decoding algorithms. For in-
stance, each VN receives two messages from each of its
neighbor CNs and produces a single message value that
is sent back to these CNs.

2.4 Euclidean Projection

In Algorithm 1, it is necessary to apply an Euclidean
projection on the parity polytope so as to get the up-
dated replica z. As already stated a parity polytope P

d

is the convex hull of all the binary vectors of length d

and an even Hamming weight. Barman et al. in [39] de-
veloped an e�cient projection algorithm based on the
so-called ”two-slice” representation of the parity poly-
tope. They show that for any vector in P

d

can be ex-

1 Similar description of the flooding based LDPC decoding
for Min-Sum algorithm can be found for instance in [6].

[2] Xiaojie Zhang and Paul H.Siegel, “Efficient iterative LP decoding of LDPC codes with 
alternating  direction  method  of  multipliers,”  IEEE  International  Symposium  on 
Information Theory (ISIT), 2013.

[3]  X.  Jiao,  H.  Wei,  J.  Mu,  and  C.  Chen,  “Improved  ADMM  penalized  decoder  for 
irregular low-density parity-check codes,” IEEE Communications Letters, June 2015. 
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n

1 2 3

(λ,
z)

(λ
,z)

(λ,z)

2

n

1 3

L
LL

�i =

⇣P
(�j + zj)� LLRi

µ

⌘
� ↵

µ

degV N � 2↵
µ

One broadcasted message
!i = ⇢⇥ Lk

i!j + (1� ⇢)z(k�1)
j + �(k�1)

j

z = ⇧Pdcj
(!)

�k
j!i = !i � zi

L(k)
j!i = (z(k)j )i � (�(k)

j )i

Two « messages » per VN 
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 The « Euclidian projection » task

๏ Euclidian projection operation is not 
trivial at all,

- Lots of arithmetic operations,

- 4 conditional statements, that break computation 
parallelism,

- Many sequential sections exist due to data 
dependencies between computations,

๏ Except arithmetic operations,
- Data clipping in [0.0, 1.0] range,

- Data sorting (deg_cn) required twice,
➡ { sorted values, initial positions } = SORT( values )

๏ It is already the simplified version of 
the Euclidian projection…

- Less straightforward than Min-Sum algorithm,

12
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Algorithm 2 Projection to the convex polytope.
1: function Projection(x

j

: float values)
2: if 8j 2 [0, d

c

[, x
j

 0 then

3: return {0, 0, . . . , 0}
4: else if 8j 2 [0, d

c

[, x
j

� 1 then

5: return {1, 1, . . . , 1}
6: end if

7: {xr

, p

r} = Sort in Ascending Order and Store Positions (x)
8: x

rc = clamp( x

r, [0, 1])

9: cp =
d

c

�1P
i=0

x

rc

i

10: f = bcpc � bcpc mod 2

11: sc =
fP

i=0

x

rc

i

�
d

c

�1P
i=f+1

x

rc

i

12: if sc  r then

13: return reorder({xrc

, p

r})
14: end if

15: 8j 2 [0, d
c

[, y
j

=

⇢
(xrc

j

� 1) if j  f

�x

rc

j

otherwise

16: {yr

, p

r} = Sort in Ascending Order and Store Positions (y)
17: Set �

max

= 1

2

(yr

f+1

� y

r

f+2

)

18: Construct a set of breakpoints B = {yr

i

| 0  i  d

c�1

; 0 
y

r

i

 �

max

}

19: 8j 2 [0, d
c

[, yr

j

(�) =

⇢
clamp(yr

j

� �,[0, 1]) if j  f

clamp(yr

j

+ �,[0, 1]) otherwise

20: March through the breakpoints to find i |
d

c

�1P
j=0

y

r

j

(�)  r

21: Find �

opt

2 [�
i�1

, �

i

] by solving Equation (4.28) in [39]
22: return reorder(yr(�

opt

) , pr)
23: end function

pressed as a convex combination of two binary vectors
of Hamming weight r and r + 2, for some even integer
r. In order to characterize the convex hull of the two
slices, a sorting on all coordinates of the given vector is
required to decide whether it is within the check poly-
tope. If the given vector is outside the polytope, the
projection algorithm includes two steps: first project
the vector on a scaled version of one of the two slices,
and then project the residual on another scaled slice.
Algorithm 2 summarizes the projection on the parity
polytope function. It has four exit points depending
on the input values of the vector x to be projected. It
contains two special sorting functions which store the
input vector positions so that it can be reordered before
the final function output. This sorting will be further
studied in 5.2.

It is important to notice that the projection function
is control intensive since the idea of using the two slice
representation requires to sort the input vector then
determine a set of breakpoints then check them (at most
test d

c

breakpoints) until finding the optimum value of
� and finally solve a linear equation from [39]. Many
test statements are needed to take care of the cases
when the input vector has many repeated entries [39].
Interested readers may find a complete presentation of
the Euclidean projection operation in [30].

1.4 2.4 3.4

10�6

10�5

10�4

10�3

10�2

10�1

100

Eb/N

0

F
E
R

fo
r
5
7
6
⇥

2
8
8
L
D
P
C

c
o
d
e

SPA

MS

ADMM-l
2

1 2

10�7

10�6

10�5

10�4

10�3

10�2

10�1

100

Eb/N

0

F
E
R

fo
r
2
6
4
0
⇥

1
3
2
0
L
D
P
C

c
o
d
e

SPA

MS

ADMM-l
2

Fig. 2 FER comparison of ADMM-l
2

penalized decoders
with SPA and MS decoders on AWGN channel.

2.5 Error correction performance

The ADMM LP decoding has proven its e�ciency as
an error correction approach [31] against traditional
SPA or MS based techniques. FER performances of the
ADMM-l2 penalized decoder has been already reported
in many research works [28,31,37,38]. Figure 2 provides
the frame error rate performance of the ADMM-l2 pe-
nalized decoder over an AWGN channel for a WiMAX
standardized irregular LDPC code with rate 1/2 and
the Margulis regular LDPC code. The FER performances
are compared with those of the usual Sum-Product (SPA)
and Min-Sum (MS) floating point decoders using the
flooding scheduling. In these simulations, the maximum
number of iterations for all the decoders is set to 200.
It can be seen that the ADMM-l2 penalized decoder
performs better than the optimal BP SPA decoder as
well as all the variant of the MS decoder, for a same
set of maximum decoding iterations. For example, at
FER=10�4, the performance gain for the ADMM-l2 de-
coder is 0.5 dB for the 576⇥288 WiMAX code. For the
Margulis code, at FER=10�6, the performance gain for
the ADMM l2 decoder is 0.2 dB.

3 Complexity Analysis

3.1 Introduction

The high error correction performance of the ADMM
algorithm is reached at the cost of a high computa-
tion complexity which makes the original naive descrip-
tion of the ADMM algorithm [30, 38] useless for a real
time implementation e.g. in Software Defined Radio
(SDR) systems. In the current section, an analysis of
the ADMM algorithm complexity compared with the
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Table 2 Percentage of processing time in the original ADMM l
2

decoder (%).

Code SNR=1.5dB SNR=2dB

VN CN Proj. Sort VN CN Proj. Sort
576 ⇥ 288 15 85 53 38.5 16 84 50 41
1152 ⇥ 288 14 86 60 45 15 85 59 44
2304 ⇥ 1152 15 86 54 36 16 84 49 38.5
2640 ⇥ 1320 15 85 52 38 17 83 47.5 41
4000 ⇥ 2000 15 85 51 38 18 82 46 41.5
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Fig. 6 Example of 4 check nodes parallel processing.

For CN kernel, the parallelization is not straight-
forward. Indeed, inter-CN processing can be applied
during the overall processing. The Euclidean projection
contains many condition branches and unbounded loops
to be described using inter-CN values. Consequently,
the CN kernel was split into three main parts as illus-
trated in Figure 6. First part (∂) takes advantage of
Inter-CN parallelism and prepares the projection vec-
tors. The fifth part (∫) also takes advantage of Inter-
CN parallelism and updates the messages according to
the projection results. The middle part (∏) represents
the Euclidean projection and is sequentially executed
on each CN vector. Intra-vector parallelism is used to
speed-up the projection task like in the w1 solution.
To implement these three processes and benefit from
di↵erent parallelism levels, data reordering in registers
is required. The reordering operation equals a matrix
transposition operation. It is summarized in Figure 5.
It is required at the beginning and at the end of the
Euclidean projection task (∑, π). The transpose op-
erations on floating point values can be e�ciently im-
plemented using x86 SIMD features [40] which is also
demonstrated by the comparison between w1 and w2

solutions in section 6.1.1.

Finally, it is possible also to take advantage of multi-
ple processor cores available for instance in x86 targets
at the frame level. It is equivalent to running multi-
ple decoders simultaneously by using a di↵erent num-
ber of threads o↵ered by the processor like in usual
LDPC studies. Theoretically, this SMPD parallelization
strategy may provides a Q times acceleration when Q
processor cores are switched on. However, external phe-
nomenas such as L3 cache misses due to Q times higher
memory footprint may limit the real acceleration factor
as discussed in section 6.1.2.

Implementation optimizations

In order to reach highly-e�cient ADMM-l2 decoder im-
plementations, transformations were applied to better
map the algorithm on x86 processor architecture.

First, in VN and CN kernels, the message access
patterns (for LLR channel information and exchanged
messages) are quite complex due to the LDPC code
sparse matrix structure. Most of the memory accesses
in VN and CN kernels are performed on non contigu-
ous RAM addresses which hardens the memory cache
prefetcher task and leads to cache miss penalties. Sub-
sequently, the LDPC code was reordered and the ex-
changed message’s memory position was modified to
get linear memory access pattern at least in VN kernel.

Second, along with the optimizations detailed in
subsection 5.2, a set of d

c

parallel computations lo-
cated in the projection task was also optimized using
the SIMD processing capability. However, in the pro-
jection processing, a large part of the computations
are sequential and can not be SIMD optimized e.g. the
data sorting processes. Consequently, other optimiza-
tion techniques were explored.

Based on the results of the decoder profiling in sec-
tion 4, we found that accelerating the sort inside the
projection function would alleviate much of the CN
computation complexity. In fact, the decoder profiling
underscores the need to find the fastest way to sort an
array of d

c

floating point values. The sorting task used
in the projection is though more complex than the usual
sorting functions because it must keep the original co-
ordinates of the d

c

values to process an original data
reordering at the end of the projection algorithm.

First, sorting algorithms in the literature were bench-
marked when sorting only 6 floating point values. For
each algorithm, the average processing time required
to sort the values was measured on the targeted Core-
i7 processor using the RDTSC instruction. Figure 7(a)
reports the average number of cycles of the 5 most ef-
ficient sorting methods evaluated. The network sorting
with fast swap seems to be the most e�cient method.

Then, we extended these functions considering the
sort of two arrays, one for d

c

floats and another for their
d
c

integer coordinates. Average amount of clock cycles
required by modified sorting algorithm is provided in

Execution time profiling obtained thanks to X. Liu open-source C++ ADMM decoder sites.google.com/site/xishuoliu/codes.

From a decoding point of view CN processing 
consume more than 80% of the execution time

Amount of computations involved in VN/CN processing for different LDPC decoding algorithms
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Table 1 Comparison of the theorical complexity of the CN and VN computation kernels.

MSA SPA ADMM [30] ADMM-l

2

[37] S-ADMM-l

2

[34]

VN CN VN CN VN CN VN CN VN CN

add & sub 2d

v

� 1 2d

v

� 1 2d

v

4d

c

2d

v

+ 2 4d

c

2d

v

+ 2 6d

c

� 1

multiply & div 4d

c

1 2d

c

2 2d

c

2 2d

c

arctan

1/�1

2d

c

min, max, abs, xor, cmp 9d

c

6d

c

2 2 2 d

c

+ 1

projection

⇤
1 1 at most 1

Memory access 2d

v

+ 1 2d

c

2d

v

+ 1 2d

c

2d

v

+ 2 5d

c

2d

v

+ 2 5d

c

2d

v

+ 2 7d

c

Memory reads � � � � 2d

v

+ 1 3d

c

2d

v

+ 1 3d

c

2d

v

+ 1 4d

c

Memory writes � � � � 1 2d

c

1 2d

c

1 3d

c

Consequently, even though the computation com-
plexity at each decoding iteration is high, it is partially
outweighed by a less number of decoding iterations re-
quired to decode codewords. It is also clear that beyond
the waterfall region, all the decoders tend to have the
same decoding iteration number.

3.4 ADMM memory complexity

Along with the computational metrics, an additional
indicator useful to compare the LDPC decoding ap-
proach complexity is the memory footprint required by
the decoding processes. For SPA and MS algorithms
implemented using the flooding scheduling, the mem-
ory footprint � provided in terms of elements required
by the decoding process is equal to �1 = N + 2 ⇥ m;,
with N the code length andm the number of exchanged
messages between CN and VN nodes.

For the ADMM-l2 decoder, the memory footprint
required by the decoding process is equal to �2 = 2 ⇥
(N +m). It is higher than to the memory footprint of
the MS and SPA decoders. Indeed, as shown in Algo-
rithm 1, N channel values, N CN to VN messages, two
message sets named z

(t)
j

and �
(t)
j

which are composed
of m elements, are needed.

The S-ADMM-l2 algorithm that discards the use-
less Euclidean projections has the highest memory foot-
print. Indeed, the projection’s input values have to be
stored between decoding iterations. Consequently, its
memory footprint requiresmmore elements and is equal
to �3 = 2⇥N + 3⇥m.

Ultimately, in terms of memory complexity, all ADMM
decoding algorithms need higher memory than the usual
LDPC decoding approaches.

4 Processing bottleneck indentification

Xishuo Liu, one of the authors of the first articles [30,38]
on ADMM for LDPC codes provides his source codes
online 2 under open-source license. His decoder is not
optimized for throughput performances but acts as a
functional demonstrator. Our work initially took over

2

sites.google.com/site/xishuoliu/codes

his C++ ADMM-l2 decoder. Then, it was slightly mod-
ified to remove the dynamic memory allocations (mal-
loc, free) in the decoding process and to include the
latest ADMM research approaches [37] where the l2
penalization function introduces di↵erent penalty pa-
rameters for variable nodes with di↵erent degrees. It
improves the decoding performances of the ADMM de-
coder compared to SPA and MS approaches. In [37],
the comparison was done only with the original ADMM
and its l2 penalized version from [38]. In order to iden-
tify and measure the hotspots in terms of computation
complexity, a profiling step of the application was done.
Indeed, theoretical analysis is complex for the ADMM
decoder where some parts of the projection operation
involved in CNs are control intensive processing.

Using the real time counter of the x86 target (RDTSC
instruction), we measured the average number of clock
cycles required to execute kernel 2 and kernel 3 of Algo-
rithm 1 for various LDPC codes at di↵erent SNR values.
Results provided in Table 2 show that the CN kernel
consumes over 80% of the execution time. To get these
statistics, di↵erent regular and irregular codes with var-
ious code lengths and check degrees 2 {6, 7, 14, 15} are
provided. Time repartition seems to be independent
from these parameters. Moreover, additional experimen-
tations demonstrated that the SNR has a negligible im-
pact on the execution time repartition.

The CN kernel (kernel 3 of Algorithm1) is composed
of two main parts. The first part prepares the values for
the projection according to the VN to CN messages and
updates the CN to VN messages after the projection.
The computations involved are primarily additions and
multiplications. The second part of the CN kernel is
the Euclidean projection on the parity polytope already
explained in 2.4. This projection computation is com-
posed of arithmetic operations interleaved with sequen-
tial control intensive sections. Statistics about the exe-
cution time repartition in the CN kernel was measured.
Results reported in Table 2 show that projection con-
sumes about at least half of the decoding execution
time. The complete description of the projection shows
that on top of arithmetic additions and multiplications,
this algorithm makes use of two sorting functions of 2d

c

values. Profiling statistics attest that the percentage of

Execution time profiling of a « naive » ADMM software implementation (% of the total decoding time)
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Table 2 Percentage of processing time in the original ADMM l
2

decoder (%).

Code SNR=1.5dB SNR=2dB

VN CN Proj. Sort VN CN Proj. Sort
576 ⇥ 288 15 85 53 38.5 16 84 50 41
1152 ⇥ 288 14 86 60 45 15 85 59 44
2304 ⇥ 1152 15 86 54 36 16 84 49 38.5
2640 ⇥ 1320 15 85 52 38 17 83 47.5 41
4000 ⇥ 2000 15 85 51 38 18 82 46 41.5
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Fig. 6 Example of 4 check nodes parallel processing.

For CN kernel, the parallelization is not straight-
forward. Indeed, inter-CN processing can be applied
during the overall processing. The Euclidean projection
contains many condition branches and unbounded loops
to be described using inter-CN values. Consequently,
the CN kernel was split into three main parts as illus-
trated in Figure 6. First part (∂) takes advantage of
Inter-CN parallelism and prepares the projection vec-
tors. The fifth part (∫) also takes advantage of Inter-
CN parallelism and updates the messages according to
the projection results. The middle part (∏) represents
the Euclidean projection and is sequentially executed
on each CN vector. Intra-vector parallelism is used to
speed-up the projection task like in the w1 solution.
To implement these three processes and benefit from
di↵erent parallelism levels, data reordering in registers
is required. The reordering operation equals a matrix
transposition operation. It is summarized in Figure 5.
It is required at the beginning and at the end of the
Euclidean projection task (∑, π). The transpose op-
erations on floating point values can be e�ciently im-
plemented using x86 SIMD features [40] which is also
demonstrated by the comparison between w1 and w2

solutions in section 6.1.1.

Finally, it is possible also to take advantage of multi-
ple processor cores available for instance in x86 targets
at the frame level. It is equivalent to running multi-
ple decoders simultaneously by using a di↵erent num-
ber of threads o↵ered by the processor like in usual
LDPC studies. Theoretically, this SMPD parallelization
strategy may provides a Q times acceleration when Q
processor cores are switched on. However, external phe-
nomenas such as L3 cache misses due to Q times higher
memory footprint may limit the real acceleration factor
as discussed in section 6.1.2.

Implementation optimizations

In order to reach highly-e�cient ADMM-l2 decoder im-
plementations, transformations were applied to better
map the algorithm on x86 processor architecture.

First, in VN and CN kernels, the message access
patterns (for LLR channel information and exchanged
messages) are quite complex due to the LDPC code
sparse matrix structure. Most of the memory accesses
in VN and CN kernels are performed on non contigu-
ous RAM addresses which hardens the memory cache
prefetcher task and leads to cache miss penalties. Sub-
sequently, the LDPC code was reordered and the ex-
changed message’s memory position was modified to
get linear memory access pattern at least in VN kernel.

Second, along with the optimizations detailed in
subsection 5.2, a set of d

c

parallel computations lo-
cated in the projection task was also optimized using
the SIMD processing capability. However, in the pro-
jection processing, a large part of the computations
are sequential and can not be SIMD optimized e.g. the
data sorting processes. Consequently, other optimiza-
tion techniques were explored.

Based on the results of the decoder profiling in sec-
tion 4, we found that accelerating the sort inside the
projection function would alleviate much of the CN
computation complexity. In fact, the decoder profiling
underscores the need to find the fastest way to sort an
array of d

c

floating point values. The sorting task used
in the projection is though more complex than the usual
sorting functions because it must keep the original co-
ordinates of the d

c

values to process an original data
reordering at the end of the projection algorithm.

First, sorting algorithms in the literature were bench-
marked when sorting only 6 floating point values. For
each algorithm, the average processing time required
to sort the values was measured on the targeted Core-
i7 processor using the RDTSC instruction. Figure 7(a)
reports the average number of cycles of the 5 most ef-
ficient sorting methods evaluated. The network sorting
with fast swap seems to be the most e�cient method.

Then, we extended these functions considering the
sort of two arrays, one for d

c

floats and another for their
d
c

integer coordinates. Average amount of clock cycles
required by modified sorting algorithm is provided in

Execution time profiling of a « naive » ADMM software implementation (% of the total decoding time)

Execution time profiling obtained thanks to X. Liu open-source C++ ADMM decoder sites.google.com/site/xishuoliu/codes.

Euclidian projection is more than 
60% of the CN processing time

Amount of computations involved in VN/CN processing for different LDPC decoding algorithms
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Table 1 Comparison of the theorical complexity of the CN and VN computation kernels.

MSA SPA ADMM [30] ADMM-l

2

[37] S-ADMM-l

2

[34]

VN CN VN CN VN CN VN CN VN CN

add & sub 2d

v

� 1 2d

v

� 1 2d

v

4d

c

2d

v

+ 2 4d

c

2d

v

+ 2 6d

c

� 1

multiply & div 4d

c

1 2d

c

2 2d

c

2 2d

c

arctan

1/�1

2d

c

min, max, abs, xor, cmp 9d

c

6d

c

2 2 2 d

c

+ 1

projection

⇤
1 1 at most 1

Memory access 2d

v

+ 1 2d

c

2d

v

+ 1 2d

c

2d

v

+ 2 5d

c

2d

v

+ 2 5d

c

2d

v

+ 2 7d

c

Memory reads � � � � 2d

v

+ 1 3d

c

2d

v

+ 1 3d

c

2d

v

+ 1 4d

c

Memory writes � � � � 1 2d

c

1 2d

c

1 3d

c

Consequently, even though the computation com-
plexity at each decoding iteration is high, it is partially
outweighed by a less number of decoding iterations re-
quired to decode codewords. It is also clear that beyond
the waterfall region, all the decoders tend to have the
same decoding iteration number.

3.4 ADMM memory complexity

Along with the computational metrics, an additional
indicator useful to compare the LDPC decoding ap-
proach complexity is the memory footprint required by
the decoding processes. For SPA and MS algorithms
implemented using the flooding scheduling, the mem-
ory footprint � provided in terms of elements required
by the decoding process is equal to �1 = N + 2 ⇥ m;,
with N the code length andm the number of exchanged
messages between CN and VN nodes.

For the ADMM-l2 decoder, the memory footprint
required by the decoding process is equal to �2 = 2 ⇥
(N +m). It is higher than to the memory footprint of
the MS and SPA decoders. Indeed, as shown in Algo-
rithm 1, N channel values, N CN to VN messages, two
message sets named z

(t)
j

and �
(t)
j

which are composed
of m elements, are needed.

The S-ADMM-l2 algorithm that discards the use-
less Euclidean projections has the highest memory foot-
print. Indeed, the projection’s input values have to be
stored between decoding iterations. Consequently, its
memory footprint requiresmmore elements and is equal
to �3 = 2⇥N + 3⇥m.

Ultimately, in terms of memory complexity, all ADMM
decoding algorithms need higher memory than the usual
LDPC decoding approaches.

4 Processing bottleneck indentification

Xishuo Liu, one of the authors of the first articles [30,38]
on ADMM for LDPC codes provides his source codes
online 2 under open-source license. His decoder is not
optimized for throughput performances but acts as a
functional demonstrator. Our work initially took over

2

sites.google.com/site/xishuoliu/codes

his C++ ADMM-l2 decoder. Then, it was slightly mod-
ified to remove the dynamic memory allocations (mal-
loc, free) in the decoding process and to include the
latest ADMM research approaches [37] where the l2
penalization function introduces di↵erent penalty pa-
rameters for variable nodes with di↵erent degrees. It
improves the decoding performances of the ADMM de-
coder compared to SPA and MS approaches. In [37],
the comparison was done only with the original ADMM
and its l2 penalized version from [38]. In order to iden-
tify and measure the hotspots in terms of computation
complexity, a profiling step of the application was done.
Indeed, theoretical analysis is complex for the ADMM
decoder where some parts of the projection operation
involved in CNs are control intensive processing.

Using the real time counter of the x86 target (RDTSC
instruction), we measured the average number of clock
cycles required to execute kernel 2 and kernel 3 of Algo-
rithm 1 for various LDPC codes at di↵erent SNR values.
Results provided in Table 2 show that the CN kernel
consumes over 80% of the execution time. To get these
statistics, di↵erent regular and irregular codes with var-
ious code lengths and check degrees 2 {6, 7, 14, 15} are
provided. Time repartition seems to be independent
from these parameters. Moreover, additional experimen-
tations demonstrated that the SNR has a negligible im-
pact on the execution time repartition.

The CN kernel (kernel 3 of Algorithm1) is composed
of two main parts. The first part prepares the values for
the projection according to the VN to CN messages and
updates the CN to VN messages after the projection.
The computations involved are primarily additions and
multiplications. The second part of the CN kernel is
the Euclidean projection on the parity polytope already
explained in 2.4. This projection computation is com-
posed of arithmetic operations interleaved with sequen-
tial control intensive sections. Statistics about the exe-
cution time repartition in the CN kernel was measured.
Results reported in Table 2 show that projection con-
sumes about at least half of the decoding execution
time. The complete description of the projection shows
that on top of arithmetic additions and multiplications,
this algorithm makes use of two sorting functions of 2d

c

values. Profiling statistics attest that the percentage of
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Table 2 Percentage of processing time in the original ADMM l
2

decoder (%).

Code SNR=1.5dB SNR=2dB

VN CN Proj. Sort VN CN Proj. Sort
576 ⇥ 288 15 85 53 38.5 16 84 50 41
1152 ⇥ 288 14 86 60 45 15 85 59 44
2304 ⇥ 1152 15 86 54 36 16 84 49 38.5
2640 ⇥ 1320 15 85 52 38 17 83 47.5 41
4000 ⇥ 2000 15 85 51 38 18 82 46 41.5
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Fig. 6 Example of 4 check nodes parallel processing.

For CN kernel, the parallelization is not straight-
forward. Indeed, inter-CN processing can be applied
during the overall processing. The Euclidean projection
contains many condition branches and unbounded loops
to be described using inter-CN values. Consequently,
the CN kernel was split into three main parts as illus-
trated in Figure 6. First part (∂) takes advantage of
Inter-CN parallelism and prepares the projection vec-
tors. The fifth part (∫) also takes advantage of Inter-
CN parallelism and updates the messages according to
the projection results. The middle part (∏) represents
the Euclidean projection and is sequentially executed
on each CN vector. Intra-vector parallelism is used to
speed-up the projection task like in the w1 solution.
To implement these three processes and benefit from
di↵erent parallelism levels, data reordering in registers
is required. The reordering operation equals a matrix
transposition operation. It is summarized in Figure 5.
It is required at the beginning and at the end of the
Euclidean projection task (∑, π). The transpose op-
erations on floating point values can be e�ciently im-
plemented using x86 SIMD features [40] which is also
demonstrated by the comparison between w1 and w2

solutions in section 6.1.1.

Finally, it is possible also to take advantage of multi-
ple processor cores available for instance in x86 targets
at the frame level. It is equivalent to running multi-
ple decoders simultaneously by using a di↵erent num-
ber of threads o↵ered by the processor like in usual
LDPC studies. Theoretically, this SMPD parallelization
strategy may provides a Q times acceleration when Q
processor cores are switched on. However, external phe-
nomenas such as L3 cache misses due to Q times higher
memory footprint may limit the real acceleration factor
as discussed in section 6.1.2.

Implementation optimizations

In order to reach highly-e�cient ADMM-l2 decoder im-
plementations, transformations were applied to better
map the algorithm on x86 processor architecture.

First, in VN and CN kernels, the message access
patterns (for LLR channel information and exchanged
messages) are quite complex due to the LDPC code
sparse matrix structure. Most of the memory accesses
in VN and CN kernels are performed on non contigu-
ous RAM addresses which hardens the memory cache
prefetcher task and leads to cache miss penalties. Sub-
sequently, the LDPC code was reordered and the ex-
changed message’s memory position was modified to
get linear memory access pattern at least in VN kernel.

Second, along with the optimizations detailed in
subsection 5.2, a set of d

c

parallel computations lo-
cated in the projection task was also optimized using
the SIMD processing capability. However, in the pro-
jection processing, a large part of the computations
are sequential and can not be SIMD optimized e.g. the
data sorting processes. Consequently, other optimiza-
tion techniques were explored.

Based on the results of the decoder profiling in sec-
tion 4, we found that accelerating the sort inside the
projection function would alleviate much of the CN
computation complexity. In fact, the decoder profiling
underscores the need to find the fastest way to sort an
array of d

c

floating point values. The sorting task used
in the projection is though more complex than the usual
sorting functions because it must keep the original co-
ordinates of the d

c

values to process an original data
reordering at the end of the projection algorithm.

First, sorting algorithms in the literature were bench-
marked when sorting only 6 floating point values. For
each algorithm, the average processing time required
to sort the values was measured on the targeted Core-
i7 processor using the RDTSC instruction. Figure 7(a)
reports the average number of cycles of the 5 most ef-
ficient sorting methods evaluated. The network sorting
with fast swap seems to be the most e�cient method.

Then, we extended these functions considering the
sort of two arrays, one for d

c

floats and another for their
d
c

integer coordinates. Average amount of clock cycles
required by modified sorting algorithm is provided in

Execution time profiling of a « naive » ADMM software implementation (% of the total decoding time)

Execution time profiling obtained thanks to X. Liu open-source C++ ADMM decoder sites.google.com/site/xishuoliu/codes.

Both data sorting task consumes 
80% of the Euclidian projection time

Amount of computations involved in VN/CN processing for different LDPC decoding algorithms
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Table 1 Comparison of the theorical complexity of the CN and VN computation kernels.
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Consequently, even though the computation com-
plexity at each decoding iteration is high, it is partially
outweighed by a less number of decoding iterations re-
quired to decode codewords. It is also clear that beyond
the waterfall region, all the decoders tend to have the
same decoding iteration number.

3.4 ADMM memory complexity

Along with the computational metrics, an additional
indicator useful to compare the LDPC decoding ap-
proach complexity is the memory footprint required by
the decoding processes. For SPA and MS algorithms
implemented using the flooding scheduling, the mem-
ory footprint � provided in terms of elements required
by the decoding process is equal to �1 = N + 2 ⇥ m;,
with N the code length andm the number of exchanged
messages between CN and VN nodes.

For the ADMM-l2 decoder, the memory footprint
required by the decoding process is equal to �2 = 2 ⇥
(N +m). It is higher than to the memory footprint of
the MS and SPA decoders. Indeed, as shown in Algo-
rithm 1, N channel values, N CN to VN messages, two
message sets named z

(t)
j

and �
(t)
j

which are composed
of m elements, are needed.

The S-ADMM-l2 algorithm that discards the use-
less Euclidean projections has the highest memory foot-
print. Indeed, the projection’s input values have to be
stored between decoding iterations. Consequently, its
memory footprint requiresmmore elements and is equal
to �3 = 2⇥N + 3⇥m.

Ultimately, in terms of memory complexity, all ADMM
decoding algorithms need higher memory than the usual
LDPC decoding approaches.

4 Processing bottleneck indentification

Xishuo Liu, one of the authors of the first articles [30,38]
on ADMM for LDPC codes provides his source codes
online 2 under open-source license. His decoder is not
optimized for throughput performances but acts as a
functional demonstrator. Our work initially took over

2

sites.google.com/site/xishuoliu/codes

his C++ ADMM-l2 decoder. Then, it was slightly mod-
ified to remove the dynamic memory allocations (mal-
loc, free) in the decoding process and to include the
latest ADMM research approaches [37] where the l2
penalization function introduces di↵erent penalty pa-
rameters for variable nodes with di↵erent degrees. It
improves the decoding performances of the ADMM de-
coder compared to SPA and MS approaches. In [37],
the comparison was done only with the original ADMM
and its l2 penalized version from [38]. In order to iden-
tify and measure the hotspots in terms of computation
complexity, a profiling step of the application was done.
Indeed, theoretical analysis is complex for the ADMM
decoder where some parts of the projection operation
involved in CNs are control intensive processing.

Using the real time counter of the x86 target (RDTSC
instruction), we measured the average number of clock
cycles required to execute kernel 2 and kernel 3 of Algo-
rithm 1 for various LDPC codes at di↵erent SNR values.
Results provided in Table 2 show that the CN kernel
consumes over 80% of the execution time. To get these
statistics, di↵erent regular and irregular codes with var-
ious code lengths and check degrees 2 {6, 7, 14, 15} are
provided. Time repartition seems to be independent
from these parameters. Moreover, additional experimen-
tations demonstrated that the SNR has a negligible im-
pact on the execution time repartition.

The CN kernel (kernel 3 of Algorithm1) is composed
of two main parts. The first part prepares the values for
the projection according to the VN to CN messages and
updates the CN to VN messages after the projection.
The computations involved are primarily additions and
multiplications. The second part of the CN kernel is
the Euclidean projection on the parity polytope already
explained in 2.4. This projection computation is com-
posed of arithmetic operations interleaved with sequen-
tial control intensive sections. Statistics about the exe-
cution time repartition in the CN kernel was measured.
Results reported in Table 2 show that projection con-
sumes about at least half of the decoding execution
time. The complete description of the projection shows
that on top of arithmetic additions and multiplications,
this algorithm makes use of two sorting functions of 2d

c

values. Profiling statistics attest that the percentage of
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 Features of targeted multi-core architecture (Intel Core-i7)

๏ Work focuses on multicore (Intel x86),
- Efficient as (or more than) GPUs for ECCs [5,  6],

๏ Two parallel programming features,
- SIMD programming model  

(Single Instruction, Multiple Data),

- SPMT/MPMT programming model 
(Single Program, Multiple Threads),

๏ Targeted INTEL Core-i7 device:
- SIMD => 8 floats can be processed per cycle;

- SPMT => 4 physical processor cores

๏ Implementation challenges,
- Take advantage of parallelization features 

(usage rate of SIMD and SPMT) cores;

- Minimize computation complexity and 
memory footprint.
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[6] B. Le Gal and C. Jego. High-throughput multi-core LDPC decoders based on x86 processor. IEEE Transactions on Parallel and Distributed Systems, May 2015.
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based decoding was shown to be comparable to or bet-
ter than the common iterative message passing (MP)
decoding [22]. However, LP techniques are too com-
plex in terms of computations and memory require-
ments [22–25] to be applicable. With the advance of the
Alternate Direction Method of Multipliers (ADMM)
technique [26], a significant improvement towards LP
LDPC decoding scalability and optimization is possi-
ble. Barman et al. in [27] presented a two-slice charac-
terization for the parity polytope and developed an e�-
cient Euclidean projection algorithm which is required
for ADMM-based LP decoding. Despite the fact that
ADMM is distributed and has strong convergence guar-
antees, current implementations do not meet through-
put standard requirements [28, 29].

This paper draws upon the work published in [30]. It
provides additional details about the ADMM approach
for LDPC decoding and it includes a new research result
from [31] which enables to avoid the Euclidean projec-
tion in the decoding process. Besides, a detailed analy-
sis of the computation parallelism levels and the poten-
tial performance bottlenecks is presented. Further soft-
ware optimizations of the decoder for multi and many
core platforms are described. Experiments on LDPC
codes from standards show that the optimized ADMM
decoder can achieve up to 30 Mbps. Its performance
features excel those of the first traditional LDPC de-
coders software implementations [6,7,12,32,33], though
they are still below the recent ones on multi-core plat-
forms [3, 18, 20]. This novel implementation paves the
way for a real-time software implementation.

The remainder of the paper is organized as follows:
in section 2, the formulation of LP decoding and its
ADMM representation and error correction performances
are reviewed. In section 3, the ADMM’s complexity is
depicted and compared with the usual MP approaches.
In section 4, a time profiling of the di↵erent optimized
blocks is presented. In section 5 the parallelism levels of
the algorithm and their application on the target archi-
tectures to get software improvements are described. In
section 6, some performance results on multi-core and
many-core targets are provided.

2 The ADMM Algorithm

2.1 Introduction

An LDPC code is a linear block code defined by a bi-
nary sparse parity-check matrix called H. Throughout
this paper, binary LDPC codes are considered. The H
matrix is N ⇥M with N the code length, K the num-
ber of information bits in N and M = (N �K) is the

V0

C0 C1 C3C2

V1 V2 V3 V4 V5 V6 V7

Fig. 1 Tanner graph representation.

number of redundant bits in the codeword. The H ma-
trix represents the existing links between the received
information V

i

and the parity equations C
j

.

H =

0

BB@

V0 V1 V2 V3 V4 V5 V6 V7

C0 1 1 1 0 0 0 0 0
C1 0 0 0 1 1 1 0 0
C2 1 0 0 1 0 0 1 0
C3 0 1 0 0 1 0 0 1

1

CCA (1)

The H matrix can be represented as a Tanner graph
as shown in Figure 1 where the variable nodes (VN) are
indexed by I = {1, ..., N} and the check nodes (CN) are
indexed by J = {1, ...,M}. It is also represented by a
parity check matrix H 2 FM⇥N

2 (M  N) having d
v

i

ones at each column i and d
c

j

ones at each row j, as in
Equation 1. Each ‘1’ in the parity check matrix at the
position (n,m) corresponds to an edge in the Tanner
graph that connects V

n

to C
m

, as shown on Figure 1.
LetN

v

(i) be the index of the set of neighbors of variable
node v

i

and N
c

(j) be the index of the set of neighbors
of check node c

j

. The d
c

j

⇥N binary transfer matrix T
j

selects from an N -vector the coordinates corresponding
to the d

c

j

neighboring variables of check j.

2.2 ADMM formulation for LDPC decoding

2.3 Introduction

Feldman et al. in [21] proposed an original decoding
algorithm for LDPC codes based on linear program-
ming. They imported the LDPC decoding to the sphere
of convex optimization by relaxing the optimal decod-
ing problem into a linear optimization one. Barman et

al. [27] demonstrated that the ML decoding problem
can be solved using the ADMM method [26] which suits
the distributed convex optimization. To this purpose,
the LP decoding problem is reformulated as in Equa-
tion 2.3 to fit the ADMM template given in [26]. The
check polytope P

d

c

j

is the convex hull of all binary vec-
tors of length d

c

j

with an even number of ones.

minimize �Tx (2)

subject to T
j

x = z
j

; z
j

2 P
d

c

j
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based decoding was shown to be comparable to or bet-
ter than the common iterative message passing (MP)
decoding [22]. However, LP techniques are too com-
plex in terms of computations and memory require-
ments [22–25] to be applicable. With the advance of the
Alternate Direction Method of Multipliers (ADMM)
technique [26], a significant improvement towards LP
LDPC decoding scalability and optimization is possi-
ble. Barman et al. in [27] presented a two-slice charac-
terization for the parity polytope and developed an e�-
cient Euclidean projection algorithm which is required
for ADMM-based LP decoding. Despite the fact that
ADMM is distributed and has strong convergence guar-
antees, current implementations do not meet through-
put standard requirements [28, 29].

This paper draws upon the work published in [30]. It
provides additional details about the ADMM approach
for LDPC decoding and it includes a new research result
from [31] which enables to avoid the Euclidean projec-
tion in the decoding process. Besides, a detailed analy-
sis of the computation parallelism levels and the poten-
tial performance bottlenecks is presented. Further soft-
ware optimizations of the decoder for multi and many
core platforms are described. Experiments on LDPC
codes from standards show that the optimized ADMM
decoder can achieve up to 30 Mbps. Its performance
features excel those of the first traditional LDPC de-
coders software implementations [6,7,12,32,33], though
they are still below the recent ones on multi-core plat-
forms [3, 18, 20]. This novel implementation paves the
way for a real-time software implementation.

The remainder of the paper is organized as follows:
in section 2, the formulation of LP decoding and its
ADMM representation and error correction performances
are reviewed. In section 3, the ADMM’s complexity is
depicted and compared with the usual MP approaches.
In section 4, a time profiling of the di↵erent optimized
blocks is presented. In section 5 the parallelism levels of
the algorithm and their application on the target archi-
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based decoding was shown to be comparable to or bet-
ter than the common iterative message passing (MP)
decoding [22]. However, LP techniques are too com-
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ments [22–25] to be applicable. With the advance of the
Alternate Direction Method of Multipliers (ADMM)
technique [26], a significant improvement towards LP
LDPC decoding scalability and optimization is possi-
ble. Barman et al. in [27] presented a two-slice charac-
terization for the parity polytope and developed an e�-
cient Euclidean projection algorithm which is required
for ADMM-based LP decoding. Despite the fact that
ADMM is distributed and has strong convergence guar-
antees, current implementations do not meet through-
put standard requirements [28, 29].

This paper draws upon the work published in [30]. It
provides additional details about the ADMM approach
for LDPC decoding and it includes a new research result
from [31] which enables to avoid the Euclidean projec-
tion in the decoding process. Besides, a detailed analy-
sis of the computation parallelism levels and the poten-
tial performance bottlenecks is presented. Further soft-
ware optimizations of the decoder for multi and many
core platforms are described. Experiments on LDPC
codes from standards show that the optimized ADMM
decoder can achieve up to 30 Mbps. Its performance
features excel those of the first traditional LDPC de-
coders software implementations [6,7,12,32,33], though
they are still below the recent ones on multi-core plat-
forms [3, 18, 20]. This novel implementation paves the
way for a real-time software implementation.
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based decoding was shown to be comparable to or bet-
ter than the common iterative message passing (MP)
decoding [22]. However, LP techniques are too com-
plex in terms of computations and memory require-
ments [22–25] to be applicable. With the advance of the
Alternate Direction Method of Multipliers (ADMM)
technique [26], a significant improvement towards LP
LDPC decoding scalability and optimization is possi-
ble. Barman et al. in [27] presented a two-slice charac-
terization for the parity polytope and developed an e�-
cient Euclidean projection algorithm which is required
for ADMM-based LP decoding. Despite the fact that
ADMM is distributed and has strong convergence guar-
antees, current implementations do not meet through-
put standard requirements [28, 29].

This paper draws upon the work published in [30]. It
provides additional details about the ADMM approach
for LDPC decoding and it includes a new research result
from [31] which enables to avoid the Euclidean projec-
tion in the decoding process. Besides, a detailed analy-
sis of the computation parallelism levels and the poten-
tial performance bottlenecks is presented. Further soft-
ware optimizations of the decoder for multi and many
core platforms are described. Experiments on LDPC
codes from standards show that the optimized ADMM
decoder can achieve up to 30 Mbps. Its performance
features excel those of the first traditional LDPC de-
coders software implementations [6,7,12,32,33], though
they are still below the recent ones on multi-core plat-
forms [3, 18, 20]. This novel implementation paves the
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based decoding was shown to be comparable to or bet-
ter than the common iterative message passing (MP)
decoding [22]. However, LP techniques are too com-
plex in terms of computations and memory require-
ments [22–25] to be applicable. With the advance of the
Alternate Direction Method of Multipliers (ADMM)
technique [26], a significant improvement towards LP
LDPC decoding scalability and optimization is possi-
ble. Barman et al. in [27] presented a two-slice charac-
terization for the parity polytope and developed an e�-
cient Euclidean projection algorithm which is required
for ADMM-based LP decoding. Despite the fact that
ADMM is distributed and has strong convergence guar-
antees, current implementations do not meet through-
put standard requirements [28, 29].

This paper draws upon the work published in [30]. It
provides additional details about the ADMM approach
for LDPC decoding and it includes a new research result
from [31] which enables to avoid the Euclidean projec-
tion in the decoding process. Besides, a detailed analy-
sis of the computation parallelism levels and the poten-
tial performance bottlenecks is presented. Further soft-
ware optimizations of the decoder for multi and many
core platforms are described. Experiments on LDPC
codes from standards show that the optimized ADMM
decoder can achieve up to 30 Mbps. Its performance
features excel those of the first traditional LDPC de-
coders software implementations [6,7,12,32,33], though
they are still below the recent ones on multi-core plat-
forms [3, 18, 20]. This novel implementation paves the
way for a real-time software implementation.

The remainder of the paper is organized as follows:
in section 2, the formulation of LP decoding and its
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based decoding was shown to be comparable to or bet-
ter than the common iterative message passing (MP)
decoding [22]. However, LP techniques are too com-
plex in terms of computations and memory require-
ments [22–25] to be applicable. With the advance of the
Alternate Direction Method of Multipliers (ADMM)
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LDPC decoding scalability and optimization is possi-
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terization for the parity polytope and developed an e�-
cient Euclidean projection algorithm which is required
for ADMM-based LP decoding. Despite the fact that
ADMM is distributed and has strong convergence guar-
antees, current implementations do not meet through-
put standard requirements [28, 29].
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An « easy » parallelization is possible inside CN and VN 
elements. For instance, compute all in/out messages in 
parallel using SIMD feature. 

However, efficiency depends on CN/VN degree.

A « more complex » parallelization is also possible across 
CN and VN. For instance, execute the same computations 

with data from 8 different CNs. 

Needs an offline computation and message reordering.

An another « quite easy » parallelization way consists in 
decoding multiple frames in parallel with SIMD feature. 

However, complex conditional statements in Euclidian 
projection discard this approach for SIMD parallelization.
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 The first (naive) decoder implementation

๏ In 1st implementation parallelization 
was performed inside CNs/VNs,

๏ For VN elements,
➡Semi-// sum of message input messages,

➡Seq. message generations,

๏ For CN elements,
➡Semi-// ωi computations from messages,

➡Semi-parallel Euclidian projection,

➡Semi-// message generation,

๏ Speed-up the processing but,
- Usage rate of SIMD unit is lower than 100%,
‣ VN degree usually in {2, 3, 4 6},

‣ CN degree usually in {6, 7, 8, 11, 12},

- Some processing parts (eg. sorting) generate or 
process scalar results and cannot be parallelized.
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 The second (improved) decoder implementation

๏ In 2nd implementation parallelization 
inside and across CNs/VNs,

๏ For VN elements,
➡Fully-// sum of message input messages,

➡Fully-// message generations,

๏ For CN elements,
➡Fully-// ωi computation and message,

➡Semi-parallel Euclidian projection,
✓ Fully-// 1st data sorting (done before projection),

➡Fully-// message generation,

๏ Speed-up the processing but,
✓Usage rate of SIMD unit is often equal to 100%,

✓ Some processing parts remain un-parallelized,
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 Common optimizations for the parallelization approaches
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Algorithm 2 Projection to the convex polytope.
1: function Projection(x

j

: float values)
2: if 8j 2 [0, d

c

[, x
j

 0 then

3: return {0, 0, . . . , 0}
4: else if 8j 2 [0, d

c

[, x
j

� 1 then

5: return {1, 1, . . . , 1}
6: end if

7: {xr
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r} = Sort in Ascending Order and Store Positions (x)
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rc = clamp( x
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12: if sc  r then

13: return reorder({xrc
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14: end if
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] by solving Equation (4.28) in [39]
22: return reorder(yr(�
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) , pr)
23: end function

pressed as a convex combination of two binary vectors
of Hamming weight r and r + 2, for some even integer
r. In order to characterize the convex hull of the two
slices, a sorting on all coordinates of the given vector is
required to decide whether it is within the check poly-
tope. If the given vector is outside the polytope, the
projection algorithm includes two steps: first project
the vector on a scaled version of one of the two slices,
and then project the residual on another scaled slice.
Algorithm 2 summarizes the projection on the parity
polytope function. It has four exit points depending
on the input values of the vector x to be projected. It
contains two special sorting functions which store the
input vector positions so that it can be reordered before
the final function output. This sorting will be further
studied in 5.2.

It is important to notice that the projection function
is control intensive since the idea of using the two slice
representation requires to sort the input vector then
determine a set of breakpoints then check them (at most
test d

c

breakpoints) until finding the optimum value of
� and finally solve a linear equation from [39]. Many
test statements are needed to take care of the cases
when the input vector has many repeated entries [39].
Interested readers may find a complete presentation of
the Euclidean projection operation in [30].
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2.5 Error correction performance

The ADMM LP decoding has proven its e�ciency as
an error correction approach [31] against traditional
SPA or MS based techniques. FER performances of the
ADMM-l2 penalized decoder has been already reported
in many research works [28,31,37,38]. Figure 2 provides
the frame error rate performance of the ADMM-l2 pe-
nalized decoder over an AWGN channel for a WiMAX
standardized irregular LDPC code with rate 1/2 and
the Margulis regular LDPC code. The FER performances
are compared with those of the usual Sum-Product (SPA)
and Min-Sum (MS) floating point decoders using the
flooding scheduling. In these simulations, the maximum
number of iterations for all the decoders is set to 200.
It can be seen that the ADMM-l2 penalized decoder
performs better than the optimal BP SPA decoder as
well as all the variant of the MS decoder, for a same
set of maximum decoding iterations. For example, at
FER=10�4, the performance gain for the ADMM-l2 de-
coder is 0.5 dB for the 576⇥288 WiMAX code. For the
Margulis code, at FER=10�6, the performance gain for
the ADMM l2 decoder is 0.2 dB.

3 Complexity Analysis

3.1 Introduction

The high error correction performance of the ADMM
algorithm is reached at the cost of a high computa-
tion complexity which makes the original naive descrip-
tion of the ADMM algorithm [30, 38] useless for a real
time implementation e.g. in Software Defined Radio
(SDR) systems. In the current section, an analysis of
the ADMM algorithm complexity compared with the

operation involved in CNs are control intensive processing.
Using the real time counter of the x86 target (RTSC instruction),

we measured the average number of clock cycles required to execute
kernel 2 and kernel 3 of Algorithm 1 for various SNR values. Re-
sults show that the CN kernel consumes over 80% of the execution
time. Different regular and irregular LDPC codes with various code
lengths as well as various check degrees 2 {6, 7, 14, 15} were sim-
ulated to provide profiling statistics. Time breakdown seems to be
independent from these parameters. Moreover, additional experi-
mentations demonstrated that the SNR value has a negligible impact
on the execution time repartition.

The CN kernel (kernel 3 of Algorithm 1) is composed of two
main parts. The first part prepares the values for the projection ac-
cording to the VN to CN messages and updates the CN to VN mes-
sages after the projection. The computations involved are primarily
additions and multiplications. The second part of the CN kernel is
the Euclidean projection on the parity polytope. The projection al-
gorithm is fully detailed in [14] section 4. This projection computa-
tion is composed of arithmetic operations interleaved with sequential
control intensive sections. We carried out statistics about the execu-
tion time repartition in the CN kernel. Experimental results show
that the projection consumes about 60% of the CN execution time.
The complete description of the projection shows that on top of arith-
metic additions and multiplications, this algorithm makes use of two
sorting functions of 2dc values. Profiling statistics attest that the
percentage of the sorting processing cycles over the total projection
time is not less than 70%.

These execution time observations show that the current bottle-
neck of the ADMM decoder software implementation is the projec-
tion task and therefore, it has to be optimized. Since the data sorting
stages consume an important part of the projection time, a better sort
function has to be identified. Meanwhile, the ADMM decoder opti-
mization efficiency would only be reached if non-bottleneck parts of
the algorithms are also optimized (Amdahl’s law). In the next sec-
tion we explain the different optimizations that we have performed
to improve the algorithm mapping on multi-core architectures.

4. SOFTWARE OPTIMIZATIONS

4.1. Parallelism optimization

In this section, the implementation choices and the applied optimiza-
tions are explained in order to improve the ADMM software decod-
ing speed and reach significant throughputs on multi-core devices.

First, a set of traditional optimizations was applied. An adjust-
ment to simple precision floating point for both data and computa-
tions was performed to improve the processing efficiency without
impacting on the correction performance of the decoder. Subse-
quently, the code was restructured and the memory footprint was
minimized. The memory cost of the ADMM penalized decoder fi-
nally equals one of traditional SPA decoder (2⇥N + 2⇥M , with
M the number of exchanged messages). Then, a revamping of the
loops structures so as to bring out the flooding scheduling was done.

In addition, three typical parallelism levels were identified in
Algorithm 1 through taking advantage of the general purpose multi-
core processors features and the kernel computations were also man-
ually optimized using SIMD and SIMT features. Firstly, to perform
the variable nodes update computations (lines 7 to 10), each 8 VNs
are processed in parallel. This gathering enables full efficiency us-
ing all 8 processor calculation units at once. However, dv degree are
often lower than 8, thus ⇥8 acceleration can’t be always achieved.
Secondly, inside the CN computation (lines 13 to 15), the parallelism

is applied to get the necessary vector for the projection, to perform
the projection and to update the CN message. For each CN, dc cal-
culation units are assigned in parallel. For instance, when dc = 6, 6
out of 8 calculation units are assigned, leading to 75% of efficiency.
Thirdly, at the frame level computation, processing different frames
in parallel is equivalent to running multiple decoders simultaneously
by using a different number of threads offered by the processor. Ac-
cording to this analysis, we decided to take advantage of massively
parallel devices by computing a set of q frames in parallel using
OpenMP directives.

Finally, the set of dc parallel computations located in the pro-
jection task was optimized using the SIMD processing capability,
though a large part of the projection’s processing is sequential and
can not be SIMD optimized.

4.2. Sort profiling

The decoder profiling in section 3.2 underscores the need to decide
how best to reduce the complexity of the sort function used in the
projection algorithm. The idea is to find the fastest way to sort an
array of dc floating point values while keeping their original coordi-
nates (for a later reordering). As a starting point, we considered and
compared the sorting algorithms in the literature. First, sorting al-
gorithms were benchmarked by sorting only 6 float values. For each
algorithm, the average amount of processor clock cycles required for
the sort was measured using the RTSC instruction available in the
Core-i7 target. An example of measurements is shown on Figure 2
(a) which reports the average number of cycles of 5 sorting methods
when dc is equal to 6. Obviously, the direct call to the qsort library
function and the insertion methods are the slowest, followed by the
bubble sort and rank order sort. The network sorting with fast swap
seems to be the most efficient method.

Then, we extended these functions considering the sort of two
arrays, one for dc floats and another for their dc integer coordinates.
Average amount of clock cycles required by modified sorting algo-
rithm is provided in Figure 2 (b). Apparently, the rank order sort,
which doesn’t need any branch and stores data in registers before
sorting is the most efficient.

We have used these results, among others, as a basis and decided
to use the rank order approach to enhance the performance as much
as possible the projection function.

5. EXPERIMENTAL RESULTS

In this section, the performance of the optimized decoder for irregu-
lar standardized LDPC codes with different lengths, rates and degree
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Fig. 2. Average number of cycles of (a) Reference sorting functions
of 6 floats (b) Sorting functions of 6 floats keeping input positions.

operation involved in CNs are control intensive processing.
Using the real time counter of the x86 target (RTSC instruction),

we measured the average number of clock cycles required to execute
kernel 2 and kernel 3 of Algorithm 1 for various SNR values. Re-
sults show that the CN kernel consumes over 80% of the execution
time. Different regular and irregular LDPC codes with various code
lengths as well as various check degrees 2 {6, 7, 14, 15} were sim-
ulated to provide profiling statistics. Time breakdown seems to be
independent from these parameters. Moreover, additional experi-
mentations demonstrated that the SNR value has a negligible impact
on the execution time repartition.

The CN kernel (kernel 3 of Algorithm 1) is composed of two
main parts. The first part prepares the values for the projection ac-
cording to the VN to CN messages and updates the CN to VN mes-
sages after the projection. The computations involved are primarily
additions and multiplications. The second part of the CN kernel is
the Euclidean projection on the parity polytope. The projection al-
gorithm is fully detailed in [14] section 4. This projection computa-
tion is composed of arithmetic operations interleaved with sequential
control intensive sections. We carried out statistics about the execu-
tion time repartition in the CN kernel. Experimental results show
that the projection consumes about 60% of the CN execution time.
The complete description of the projection shows that on top of arith-
metic additions and multiplications, this algorithm makes use of two
sorting functions of 2dc values. Profiling statistics attest that the
percentage of the sorting processing cycles over the total projection
time is not less than 70%.

These execution time observations show that the current bottle-
neck of the ADMM decoder software implementation is the projec-
tion task and therefore, it has to be optimized. Since the data sorting
stages consume an important part of the projection time, a better sort
function has to be identified. Meanwhile, the ADMM decoder opti-
mization efficiency would only be reached if non-bottleneck parts of
the algorithms are also optimized (Amdahl’s law). In the next sec-
tion we explain the different optimizations that we have performed
to improve the algorithm mapping on multi-core architectures.

4. SOFTWARE OPTIMIZATIONS

4.1. Parallelism optimization

In this section, the implementation choices and the applied optimiza-
tions are explained in order to improve the ADMM software decod-
ing speed and reach significant throughputs on multi-core devices.

First, a set of traditional optimizations was applied. An adjust-
ment to simple precision floating point for both data and computa-
tions was performed to improve the processing efficiency without
impacting on the correction performance of the decoder. Subse-
quently, the code was restructured and the memory footprint was
minimized. The memory cost of the ADMM penalized decoder fi-
nally equals one of traditional SPA decoder (2⇥N + 2⇥M , with
M the number of exchanged messages). Then, a revamping of the
loops structures so as to bring out the flooding scheduling was done.

In addition, three typical parallelism levels were identified in
Algorithm 1 through taking advantage of the general purpose multi-
core processors features and the kernel computations were also man-
ually optimized using SIMD and SIMT features. Firstly, to perform
the variable nodes update computations (lines 7 to 10), each 8 VNs
are processed in parallel. This gathering enables full efficiency us-
ing all 8 processor calculation units at once. However, dv degree are
often lower than 8, thus ⇥8 acceleration can’t be always achieved.
Secondly, inside the CN computation (lines 13 to 15), the parallelism

is applied to get the necessary vector for the projection, to perform
the projection and to update the CN message. For each CN, dc cal-
culation units are assigned in parallel. For instance, when dc = 6, 6
out of 8 calculation units are assigned, leading to 75% of efficiency.
Thirdly, at the frame level computation, processing different frames
in parallel is equivalent to running multiple decoders simultaneously
by using a different number of threads offered by the processor. Ac-
cording to this analysis, we decided to take advantage of massively
parallel devices by computing a set of q frames in parallel using
OpenMP directives.

Finally, the set of dc parallel computations located in the pro-
jection task was optimized using the SIMD processing capability,
though a large part of the projection’s processing is sequential and
can not be SIMD optimized.

4.2. Sort profiling

The decoder profiling in section 3.2 underscores the need to decide
how best to reduce the complexity of the sort function used in the
projection algorithm. The idea is to find the fastest way to sort an
array of dc floating point values while keeping their original coordi-
nates (for a later reordering). As a starting point, we considered and
compared the sorting algorithms in the literature. First, sorting al-
gorithms were benchmarked by sorting only 6 float values. For each
algorithm, the average amount of processor clock cycles required for
the sort was measured using the RTSC instruction available in the
Core-i7 target. An example of measurements is shown on Figure 2
(a) which reports the average number of cycles of 5 sorting methods
when dc is equal to 6. Obviously, the direct call to the qsort library
function and the insertion methods are the slowest, followed by the
bubble sort and rank order sort. The network sorting with fast swap
seems to be the most efficient method.

Then, we extended these functions considering the sort of two
arrays, one for dc floats and another for their dc integer coordinates.
Average amount of clock cycles required by modified sorting algo-
rithm is provided in Figure 2 (b). Apparently, the rank order sort,
which doesn’t need any branch and stores data in registers before
sorting is the most efficient.

We have used these results, among others, as a basis and decided
to use the rank order approach to enhance the performance as much
as possible the projection function.

5. EXPERIMENTAL RESULTS

In this section, the performance of the optimized decoder for irregu-
lar standardized LDPC codes with different lengths, rates and degree
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Euclidian projection was implemented and accelerated thanks to 
SIMD feature, however: 

- Reach only a partial SIMD usage (degc is often < SIMD width); 

- Requiers horizontal computations that are slow in SIMD mode. 

- Parts cannot be parallelized using SIMD (scalar or sequential processing).

The both sort processing that are sequential 
tasks were optimized in terms of latency. 

Selection of the best data sorting algorithm 
according to the need (value, position).
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 The parallelism levels available for SPMD parallelization

๏ INTEL Core-i7 has many physical 
cores having each a SIMD unit,

๏ Processing different VN/CN in //,
✓Necessitate costly synchronization at runtime,

- Reduce the decoder throughput compared to a 
single thread implementation.

๏ Processing different frames in //,
✓No synchronization required during decoding,

✓ Easily sciable to other multicore targets,

✓ Increase memory footprint (cache misses),

22

ADMM LDPC decoder 1ADMM LDPC decoder 1ADMM LDPC decoder 1ADMM LDPC decoder 1

One decoder per 
physical core
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Experiments
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 The targeted platform for experiments (a laptop computer)

๏ Evaluation plateform,
✓ INTEL Haswell Core-i7 4960HQ CPU,

✓ 4 Physical Cores (PC) and 4 Logical Cores (LC),

✓Turbo boost @3.6GHz when one core is 
switched on 3.4GHz otherwise.

✓ 256 KB of L2 cache, 6 MB of L3 cache,

๏ Software decoders are compiled with 
Intel C++ compiler 2016,

๏ Experimental setup,
✓ IEEE 802.16e (2304 × 1152 and 576 × 288),

✓ 200 decoding iterations are executed (max.),

✓ 32b floating point data format.
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 Measure of the ADMM-l2 decoder throughputs
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Fig. 3. ADMM-l2 optimized decoder measured throughputs wrt the
number of threads (a) 2304⇥ 1152 code (b) 576⇥ 288 code.
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Fig. 4. Average number of iterations Vs throughput evolution (a)
2304⇥ 1152 LDPC code (b) 576⇥ 288 LDPC code.

distribution is illustrated. Then the decoding speed gain when com-
pared with the original ADMM decoder [16] on one core processor
target is shown. The evaluation platform employed is a MacBook
Pro computer that runs OS X 10.10. It is composed of an INTEL
Haswell Core-i74960HQ CPU. This processor runs at 2.6 GHz, with
6 MB of L3 cache memory and 16 GB of DDR3 running at 1600
MHz. It is composed of 4 Physical Cores (PC) and 4 Logical Cores
(LC) sharing the L3 cache memory while each of them has 256 KB
of unified L2 cache memory. Turbo-boost technology is switched
on. Therefore, the processor’s working clock frequency reaches 3.6
GHz when a single processor core is used and 3.4 GHz when the 4
PC and 4 LC cores are switched on.

The first experimentation set reported in Figure 3 provides the
throughput performance of the multi-threaded version of the decoder
when the number of processors switched on increases from 1 to 8.
The throughput reaches more than 30 Mbps when 8 decoders are ex-
ecuted. It meets the WiMax standard requirements for the 576⇥288
LDPC code as well as the WRAN standard requirements for the
2304 ⇥ 1152 LDPC code. It is important to notice that the aver-
age number of iterations required to decode frames decreases sub-
stantially when the SNR increases. As depicted by Figure 4, the
throughput increases linearly with the SNR value while the average
number of decoding iterations required for the decoder to converge
to a codeword decreases. For instance, at 1 dB, the average decoding
iteration number reaches 114 and 135 iterations for the 576 ⇥ 288
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Fig. 5. Speed up factor: fast decoder throughput Vs original decoder
on a single core processor for different LDPC codes.

and 2304 ⇥ 1152 LDPC codes respectively, while at 2 dB, it de-
creases considerably to 17 iterations.

The performance improvement in the decoding speed through
comparing the throughput of the original ADMM decoder with our
optimized version is shown in Figure 5. Four LDPC codes with dif-
ferent lengths and regularity are considered. A first observation is
that the longer code length, the more important the speeding factor
becomes. Another finding is that the higher the SNR value, the more
important the speeding factor gets. From this figure, we can also see
that there is a considerable decoding time reduction for the ultimate
multi-core version. For instance, the optimized decoder runs 5 to 7
times faster than the original one starting from 2.5 dB as SNR for
the long experimented codes. Lower speed-up factors are reached
for irregular codes where VN and CN kernels are more complex to
be optimized with the SIMD feature.

To the best of our knowledge, this study is the first implemen-
tation of an ADMM-LP decoder on multi-core architectures. The
throughput performance results, though lower than those of recent
LDPC decoders [22–24] (but not necessary against first implemen-
tations [17–21]), serve to strengthen the conclusion that the ADMM
decoder can compete with traditional LDPC decoders on multi pro-
cessors platforms, aside from having much better error correction
performance. Besides, this novel optimized decoder accelerates sim-
ulations to ease the study of algorithmic simplifications at high SNR
values.

6. CONCLUSION

In this paper, we described the iterative ADMM penalized algorithm
used for LP decoding of LDPC codes. This LDPC decoding algo-
rithm provides up to 0.5 dB better error correction than the MP-SPA
LDPC decoder for different LDPC codes. We optimized a software
implementation of the decoder to take advantage of SIMD and SIMT
processing features. Optimization choices are discussed and justi-
fied according to execution profiling figures. Experimentation re-
sults show that the optimized version performs considerably better,
in terms of decoding throughput, than the original version. It enables
to meet Wimax standard real time throughput requirements. This
achievement sheds light on a future multi processor implementation
as well as on an easier evaluation of potential algorithmic simplifi-
cations to reduce the computation complexity of the ADMM LP de-
coding. The decoder’s proposed implementation demonstrates that
ADMM LDPC decoding can be a viable candidate for high correc-
tion performance in Software Defined Radio systems.
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distribution is illustrated. Then the decoding speed gain when com-
pared with the original ADMM decoder [16] on one core processor
target is shown. The evaluation platform employed is a MacBook
Pro computer that runs OS X 10.10. It is composed of an INTEL
Haswell Core-i74960HQ CPU. This processor runs at 2.6 GHz, with
6 MB of L3 cache memory and 16 GB of DDR3 running at 1600
MHz. It is composed of 4 Physical Cores (PC) and 4 Logical Cores
(LC) sharing the L3 cache memory while each of them has 256 KB
of unified L2 cache memory. Turbo-boost technology is switched
on. Therefore, the processor’s working clock frequency reaches 3.6
GHz when a single processor core is used and 3.4 GHz when the 4
PC and 4 LC cores are switched on.

The first experimentation set reported in Figure 3 provides the
throughput performance of the multi-threaded version of the decoder
when the number of processors switched on increases from 1 to 8.
The throughput reaches more than 30 Mbps when 8 decoders are ex-
ecuted. It meets the WiMax standard requirements for the 576⇥288
LDPC code as well as the WRAN standard requirements for the
2304 ⇥ 1152 LDPC code. It is important to notice that the aver-
age number of iterations required to decode frames decreases sub-
stantially when the SNR increases. As depicted by Figure 4, the
throughput increases linearly with the SNR value while the average
number of decoding iterations required for the decoder to converge
to a codeword decreases. For instance, at 1 dB, the average decoding
iteration number reaches 114 and 135 iterations for the 576 ⇥ 288
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and 2304 ⇥ 1152 LDPC codes respectively, while at 2 dB, it de-
creases considerably to 17 iterations.

The performance improvement in the decoding speed through
comparing the throughput of the original ADMM decoder with our
optimized version is shown in Figure 5. Four LDPC codes with dif-
ferent lengths and regularity are considered. A first observation is
that the longer code length, the more important the speeding factor
becomes. Another finding is that the higher the SNR value, the more
important the speeding factor gets. From this figure, we can also see
that there is a considerable decoding time reduction for the ultimate
multi-core version. For instance, the optimized decoder runs 5 to 7
times faster than the original one starting from 2.5 dB as SNR for
the long experimented codes. Lower speed-up factors are reached
for irregular codes where VN and CN kernels are more complex to
be optimized with the SIMD feature.

To the best of our knowledge, this study is the first implemen-
tation of an ADMM-LP decoder on multi-core architectures. The
throughput performance results, though lower than those of recent
LDPC decoders [22–24] (but not necessary against first implemen-
tations [17–21]), serve to strengthen the conclusion that the ADMM
decoder can compete with traditional LDPC decoders on multi pro-
cessors platforms, aside from having much better error correction
performance. Besides, this novel optimized decoder accelerates sim-
ulations to ease the study of algorithmic simplifications at high SNR
values.

6. CONCLUSION

In this paper, we described the iterative ADMM penalized algorithm
used for LP decoding of LDPC codes. This LDPC decoding algo-
rithm provides up to 0.5 dB better error correction than the MP-SPA
LDPC decoder for different LDPC codes. We optimized a software
implementation of the decoder to take advantage of SIMD and SIMT
processing features. Optimization choices are discussed and justi-
fied according to execution profiling figures. Experimentation re-
sults show that the optimized version performs considerably better,
in terms of decoding throughput, than the original version. It enables
to meet Wimax standard real time throughput requirements. This
achievement sheds light on a future multi processor implementation
as well as on an easier evaluation of potential algorithmic simplifi-
cations to reduce the computation complexity of the ADMM LP de-
coding. The decoder’s proposed implementation demonstrates that
ADMM LDPC decoding can be a viable candidate for high correc-
tion performance in Software Defined Radio systems.

Throughput increases according to the SNR 
value thanks to the stopping criterion

Evaluation on a single processor core

Throughputs reach about 3Mbps@2.0dB and 
up to 6Mbps@4.0dB for both codes

Low throughputs for low SNR values due to 
the high number of executed iterations

Evaluation on P processor cores

Throughputs scale quite well with the amount 
of physical processor cores [1 => 4]

xP speed-up are not strictly reached due to L3 
cache pollution between processor cores

8 core experiment shows that logical cores 
slightly improve the decoding throughput
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Fig. 4. Average number of iterations Vs throughput evolution (a)
2304⇥ 1152 LDPC code (b) 576⇥ 288 LDPC code.

distribution is illustrated. Then the decoding speed gain when com-
pared with the original ADMM decoder [16] on one core processor
target is shown. The evaluation platform employed is a MacBook
Pro computer that runs OS X 10.10. It is composed of an INTEL
Haswell Core-i74960HQ CPU. This processor runs at 2.6 GHz, with
6 MB of L3 cache memory and 16 GB of DDR3 running at 1600
MHz. It is composed of 4 Physical Cores (PC) and 4 Logical Cores
(LC) sharing the L3 cache memory while each of them has 256 KB
of unified L2 cache memory. Turbo-boost technology is switched
on. Therefore, the processor’s working clock frequency reaches 3.6
GHz when a single processor core is used and 3.4 GHz when the 4
PC and 4 LC cores are switched on.

The first experimentation set reported in Figure 3 provides the
throughput performance of the multi-threaded version of the decoder
when the number of processors switched on increases from 1 to 8.
The throughput reaches more than 30 Mbps when 8 decoders are ex-
ecuted. It meets the WiMax standard requirements for the 576⇥288
LDPC code as well as the WRAN standard requirements for the
2304 ⇥ 1152 LDPC code. It is important to notice that the aver-
age number of iterations required to decode frames decreases sub-
stantially when the SNR increases. As depicted by Figure 4, the
throughput increases linearly with the SNR value while the average
number of decoding iterations required for the decoder to converge
to a codeword decreases. For instance, at 1 dB, the average decoding
iteration number reaches 114 and 135 iterations for the 576 ⇥ 288
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Fig. 5. Speed up factor: fast decoder throughput Vs original decoder
on a single core processor for different LDPC codes.

and 2304 ⇥ 1152 LDPC codes respectively, while at 2 dB, it de-
creases considerably to 17 iterations.

The performance improvement in the decoding speed through
comparing the throughput of the original ADMM decoder with our
optimized version is shown in Figure 5. Four LDPC codes with dif-
ferent lengths and regularity are considered. A first observation is
that the longer code length, the more important the speeding factor
becomes. Another finding is that the higher the SNR value, the more
important the speeding factor gets. From this figure, we can also see
that there is a considerable decoding time reduction for the ultimate
multi-core version. For instance, the optimized decoder runs 5 to 7
times faster than the original one starting from 2.5 dB as SNR for
the long experimented codes. Lower speed-up factors are reached
for irregular codes where VN and CN kernels are more complex to
be optimized with the SIMD feature.

To the best of our knowledge, this study is the first implemen-
tation of an ADMM-LP decoder on multi-core architectures. The
throughput performance results, though lower than those of recent
LDPC decoders [22–24] (but not necessary against first implemen-
tations [17–21]), serve to strengthen the conclusion that the ADMM
decoder can compete with traditional LDPC decoders on multi pro-
cessors platforms, aside from having much better error correction
performance. Besides, this novel optimized decoder accelerates sim-
ulations to ease the study of algorithmic simplifications at high SNR
values.

6. CONCLUSION

In this paper, we described the iterative ADMM penalized algorithm
used for LP decoding of LDPC codes. This LDPC decoding algo-
rithm provides up to 0.5 dB better error correction than the MP-SPA
LDPC decoder for different LDPC codes. We optimized a software
implementation of the decoder to take advantage of SIMD and SIMT
processing features. Optimization choices are discussed and justi-
fied according to execution profiling figures. Experimentation re-
sults show that the optimized version performs considerably better,
in terms of decoding throughput, than the original version. It enables
to meet Wimax standard real time throughput requirements. This
achievement sheds light on a future multi processor implementation
as well as on an easier evaluation of potential algorithmic simplifi-
cations to reduce the computation complexity of the ADMM LP de-
coding. The decoder’s proposed implementation demonstrates that
ADMM LDPC decoding can be a viable candidate for high correc-
tion performance in Software Defined Radio systems.
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distribution is illustrated. Then the decoding speed gain when com-
pared with the original ADMM decoder [16] on one core processor
target is shown. The evaluation platform employed is a MacBook
Pro computer that runs OS X 10.10. It is composed of an INTEL
Haswell Core-i74960HQ CPU. This processor runs at 2.6 GHz, with
6 MB of L3 cache memory and 16 GB of DDR3 running at 1600
MHz. It is composed of 4 Physical Cores (PC) and 4 Logical Cores
(LC) sharing the L3 cache memory while each of them has 256 KB
of unified L2 cache memory. Turbo-boost technology is switched
on. Therefore, the processor’s working clock frequency reaches 3.6
GHz when a single processor core is used and 3.4 GHz when the 4
PC and 4 LC cores are switched on.

The first experimentation set reported in Figure 3 provides the
throughput performance of the multi-threaded version of the decoder
when the number of processors switched on increases from 1 to 8.
The throughput reaches more than 30 Mbps when 8 decoders are ex-
ecuted. It meets the WiMax standard requirements for the 576⇥288
LDPC code as well as the WRAN standard requirements for the
2304 ⇥ 1152 LDPC code. It is important to notice that the aver-
age number of iterations required to decode frames decreases sub-
stantially when the SNR increases. As depicted by Figure 4, the
throughput increases linearly with the SNR value while the average
number of decoding iterations required for the decoder to converge
to a codeword decreases. For instance, at 1 dB, the average decoding
iteration number reaches 114 and 135 iterations for the 576 ⇥ 288
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and 2304 ⇥ 1152 LDPC codes respectively, while at 2 dB, it de-
creases considerably to 17 iterations.

The performance improvement in the decoding speed through
comparing the throughput of the original ADMM decoder with our
optimized version is shown in Figure 5. Four LDPC codes with dif-
ferent lengths and regularity are considered. A first observation is
that the longer code length, the more important the speeding factor
becomes. Another finding is that the higher the SNR value, the more
important the speeding factor gets. From this figure, we can also see
that there is a considerable decoding time reduction for the ultimate
multi-core version. For instance, the optimized decoder runs 5 to 7
times faster than the original one starting from 2.5 dB as SNR for
the long experimented codes. Lower speed-up factors are reached
for irregular codes where VN and CN kernels are more complex to
be optimized with the SIMD feature.

To the best of our knowledge, this study is the first implemen-
tation of an ADMM-LP decoder on multi-core architectures. The
throughput performance results, though lower than those of recent
LDPC decoders [22–24] (but not necessary against first implemen-
tations [17–21]), serve to strengthen the conclusion that the ADMM
decoder can compete with traditional LDPC decoders on multi pro-
cessors platforms, aside from having much better error correction
performance. Besides, this novel optimized decoder accelerates sim-
ulations to ease the study of algorithmic simplifications at high SNR
values.

6. CONCLUSION

In this paper, we described the iterative ADMM penalized algorithm
used for LP decoding of LDPC codes. This LDPC decoding algo-
rithm provides up to 0.5 dB better error correction than the MP-SPA
LDPC decoder for different LDPC codes. We optimized a software
implementation of the decoder to take advantage of SIMD and SIMT
processing features. Optimization choices are discussed and justi-
fied according to execution profiling figures. Experimentation re-
sults show that the optimized version performs considerably better,
in terms of decoding throughput, than the original version. It enables
to meet Wimax standard real time throughput requirements. This
achievement sheds light on a future multi processor implementation
as well as on an easier evaluation of potential algorithmic simplifi-
cations to reduce the computation complexity of the ADMM LP de-
coding. The decoder’s proposed implementation demonstrates that
ADMM LDPC decoding can be a viable candidate for high correc-
tion performance in Software Defined Radio systems.

Throughput increases according to the SNR 
value thanks to the stopping criterion

Low throughputs for low SNR values due to 
the 200 decoding iterations

Evaluation on a single processor core

Throughputs reach about 3Mbps@2.0dB and 
up to 6Mbps@4.0dB for both codes

Evaluation on P processor cores

Throughputs scale quite well with the amount 
of physical processor cores [1 => 4]

xP speed-up are not strictly reached due to L3 
cache pollution between processor cores

8 core experiment shows that logical cores 
slightly improve the decoding throughput
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 Current work conclusion

๏ ADMM-l2 algorithm is of great interest 
due to its high correction 
performances,

๏ ADMM-l2 is composed of massively 
parallel computations,

- Flooding schedule makes parallelization quite 
straightforward,

๏ ADMM-l2 has a high-computation 
complexity of the CN kernels,

- Mainly due to Euclidian projection,

๏ Throughput performances are 
honorable on x86 target for medium 
SNR values.
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Continuous research effort to reach higher 
throughputs for a large set of applications !

Sources in open-source : http://github.com/blegal

http://github.com/blegal
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 Since the submission … & future works

๏ Reducing the decoding computation 
complexity,

- Layered scheduling technique  
(horizontal [7] or vertical [8]),

- Simplifying the Euclidian projection processing ???

๏ Switching to many-core devices ?
- More computation parallelism but other 

hardware constraints to manage:

• Instruction replay,

• Memory latency, etc.

๏ Switching to hardware design ?
- ADMM works well with float values not yet with 

fixed-point ones…
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