Multicore | mplementation of LDPC Decoders

based on ADMM Algorithm

Imen DEBBABI?, Nadiow KHOUJA?, Fethi TLILIY,
Bevtrand LE GAL? and, Chwistophe JEGO?

1 - SUP’COM, GRESCOM Lab;,
University of Cawvthage, Tunisiov

2 - Bordeaux-INP, IMS-lab., CNRS UMR 5218
University of Bordeaur, France

N\
SUFRSQM, Zions FET

UMR 5218 CNRS

B. Le Gal ICASSP 2016 - Implementation of Signal Processing Systems March 23,2016

The LP decoding for LDPC codes

B. Le Gal ICASSP 2016 - Implementation of Signal Processing Systems March 23,2016

Introduction to LDPC codes

® LDPC codes are well-known Error Vo Vi Vs
Correction Codes working on blocs, C, /1 1 1
- K information bits; H— C 0 0 0
C 1 0 O

~ N transmitted values, 2
C3 \0 1 O

~ (N-K) redundant values,

® The LDPC code structure is defined

by a H matrix,

~ Provides VN/CN involved in parity equations,

~ Visually represented as a Tanner graph.

® State-of-the-art works for LDPC
decoding are based on MP algorithm;

~ Propagate message between CNs and VN,

- MP algorithm is iterative.

Va3

s -

Vi

—_ O =

Vs

OO =

@ @ Va)(Vs)(Va)(Vs)(Ve

Ve

o = O

Co

C1

Tanner graph representation.

Ce

Cs

—_— o O O

B. Le Gal

ICASSP 2016 - Implementation of Signal Processing Systems

March 23,2016

Related works on LDPC decoding

® During the last decade, lots of works
focused on LDPC codes. For instance :

- Find an « efficient » SPA approximation ,
» SPA algorithm is efficient but complex to implement,
» MS, OMS, NMS, 2NMS, lambda-min, ANMS, etc.

- Reduce computation complexity through
different computation schedules,

» Flooding, TDMP, conditional activation, etc.

- Efficient implementation of LDPC decoders,
» Hardware (ASIC, FPGA) for efficiency,
» Software (CPU & GPU) for flexibility.

® Linear Programming (LP) approach for
LDPC decoding is a « recent » way.

B. Le Gal ICASSP 2016 - Implementation of Signal Processing Systems March 23,2016

LP decoding of LDPC codes

® Linear programming formulation of

LDPC decoding problem,
- First, proposed by in [1],

- Huge memory & computation complexities,
- Limited to very short frames (N << 200),

® Interesting FER performance
- Especially in Error floors (Even against SPA),

- ML certificate when frame is successfully decoded
(not decoded otherwise).

Increase mainly according
| to N, N-K and deg(Ci)
g parameters

[1] J. Feldman, Decoding Error-Correcting Codes via Linear
Programming. PhD thesis, Massachussets Institute of Technology, 2003.

B. Le Gal ICASSP 2016 - Implementation of Signal Processing Systems March 23,2016

LP decoding of LDPC codes

® Lower complexity formulation,

- Initial LP ADMM algorithm [2],
- Improved ADMM-I2 against SPA [3],

- Computation complexity reduction [4],

® LP LDPC decoding becomes now
realistic for implementation purpose.

B. Le Gal

SPA
—6— ADMM-I5

00

—_
(e}
=)
R,

Jut
(e}
I
o
Ll

FFER for WiIMAX 1152 x 288 rate 0.75B LDPC code
—_
o
&

2 3 4 5
Eb/Ny

[

decoders on AWGN channel.

FFER for WIMAX 576 x 288 LDPC code

1071

1072

SPA
—— ADMM-I»

=

\
4 2.4 3.4

Eb/Ny

Fig. 1. FER comparison of ADMM-[2 penalized decoders with SPA

[2] Xiaojie Zhang and Paul H.Siegel, “Efficient iterative LP decoding of LDPC codes

with alternating direction method of multipliers,” IEEE International Symposium on

Information Theory (ISIT), 2013.

[3] X. Jiao, H. Wei, J. Mu, and C. Chen, “Improved ADMM penalized decoder for
irregular low-density parity-check codes,” IEEE Communications Letters, June 2015.

[4] H. Wei, X. Jiao, and J. Mu, “Reduced-complexity linear programming decoding
based on ADMM for LDPC codes,” IEEE Communications Letters, June 2015.

ICASSP 2016 - Implementation of Signal Processing Systems

March 23,2016

The ADMM Aecocﬂing algorithm

B. Le Gal ICASSP 2016 - Implementation of Signal Processing Systems March 23,2016

Formulation of the ADMM decoding algorithm

Algorithm 1 Flooding based ADMM -/ Algorithm.

Kernel 1: Initialization
Vi€ J,i€ Ne(j): 282, =05, 2%, =0
YVieTl:n; = %

1
2
3
4: for all k=1 — g when stop criterion = false do
5
6
7

® The ADMM algorithm is a MP-based
formulation of the LP problem,

Kernel 2: For all variable nodes in the code
for all i€Z,5€ N,(¢i) d

tgk)_ S (e)\(k: 1)

j—)Z j—)Z

- Proposed in [2] and correction improved in [3],
- Traditional flooding schedule,
- The key element is the Euclidian projection; . JEN, (i)

. (k) _ 1 (k) o
- Formulation maintains LP properties, 8: L;>,; = H[o,l](dvi_22 (t;" —mn; — ;))
9: end for

10: Kernel 3: For all check nodes in the code
11: for all j € J,i€ N.(j) do

k k—1 k—1
12 ¢ gz ggjm p>z§ﬂ>+xgﬂ)

14: end for
15: end for
16: Kernel 4: Hard decisions from soft-values
17: VieTl:¢ = Z Lq;_>j> > 0.5
JEN, (i)

[2] Xiaojie Zhang and Paul H.Siegel, “Efficient iterative LP decoding of LDPC codes with
alternating direction method of multipliers,” IEEE International Symposium on
Information Theory (ISIT), 2013.

[3] X. Jiao, H. Wei, J. Mu, and C. Chen, “Improved ADMM penalized decoder for
irregular low-density parity-check codes,” IEEE Communications Letters, June 2015.

B. Le Gal ICASSP 2016 - Implementation of Signal Processing Systems March 23,2016

Formulation of the ADMM decoding algorithm

Algorithm 1 Flooding based ADMM -/ Algorithm.

Kernel 1: Initialization
Vi€ J,i€ Ne(j): 282, =05, 2%, =0
YVieTl:n; = %

1
2
3
4: for all k=1 — g when stop criterion = false do
5
6
7

Kernel 2: For all variable nodes in the code
for all i€Z,5€ N,(¢i) d

tgk)_ S (e)\(k: 1)

j—m Jj—1

JGNU(’Z’)
k k o
8: L), = Moy (725w (¢ —ni — 2))
9: end for

® Based on 4 distinct kernels 10:

Kernel 3: For all check nodes in the code
e et 11: fi 11 4 , € N.(7) d
- Kernel 1, initializes the decoder: or all je Ji€ Nc(j) do

’ ’ 5 (k) 1,(F) (k—1) (k—1)
12: ; Hp L, .+ —=p)z: .+ X
- Kernel 2, processes all VNs; o e i i—

13: AN =T +pL§k) + (1=)z =25,
- Kernel 3, processes all CNs; 14: end for i —J j— Zi—
- Kernel 4, takes hard decision; 15: end for
16: Kernel 4: Hard decisions from soft-values
® Kernels 2 and 3 are iterated k times 17: Vi€ZI:¢ =]%3()LHj> > 0.5
JEN, (i

(# iterations)

. . o [2] Xiaojie Zhang and Paul H.Siegel, “Efficient iterative LP decoding of LDPC codes with
N DeCOdmg comPUtatlon compIeX|ty is located alternating direction method of multipliers,” IEEE International Symposium on

there; Information Theory (ISIT), 2013.

[3] X. Jiao, H. Wei, J. Mu, and C. Chen, “Improved ADMM penalized decoder for
irregular low-density parity-check codes,” IEEE Communications Letters, June 2015.

B. Le Gal ICASSP 2016 - Implementation of Signal Processing Systems March 23,2016

The VN and CN computation kernels

One broadcasted message

O 02 i)
6 2
degy T u

B. Le Gal ICASSP 2016 - Implementation of Signal Processing Systems March 23,2016

The VN and CN processing kernels

B. Le Gal

Two « messages » per VN

k—1
wi=px L+ (1= p)z" "

(k—1)
+ A5

e decj (w)

k —

= (2, — By,

(k)
L J

J—1

ICASSP 2016 - Implementation of Signal Processing Systems March 23,2016

The « Euclidian projection » task

® Euclidian projection operation is not
trivial at all,

~ Lots of arithmetic operations,

~ 4 conditional statements, that break computation
parallelism,

~ Many sequential sections exist due to data
dependencies between computations,

® Except arithmetic operations,
~ Data clipping in [0.0, 1.0] range,

~ Data sorting (deg_cn) required twice,
= { sorted values, initial positions } = SORT(values)

@ [t is already the simplified version of
the Euclidian projection...

~ Less straightforward than Min-Sum algorithm,

Algorithm 2 Projection to the convex polytope.

1: function ProJECTION(z; : float values)

2: if Vj € [0,d.[,z; <0 then
3: |return {0,0,...,0} |
4: else if Vj € [0,d.[,z; > 1 then
5: return {1,1,...,1} |
6: end if
T [({z",p"} = Sort in Ascending Order and Store Positions (z) |
8: z' ° = clamp(=", |0, 1])
de—1
9: cp= Y, ¢
i=0

10: f= Lc;)J — |lep] mod 2
f de—1

11: sc= Y x;°— > x°
i=0 i=f41
12: if sc < r then
13: |return reorder({z"¢,p" }) |
14: end if (a7)it f
. . o :Ej -1 I 7 S
15: Vi €[0,de|,y; = { —x;C otherwise
16: ({y",p"} = Sort in Ascending Order and Store Positions (y) |
17: Set Omaz = %(y}'—kl - y}—l—Z)
18: Construct a set of breakpoints B = {y] |0 < i < d._1;0 <
Vi < Bmaz}
. . roay _ J clamp(yy — B,[0,1]) ifj < f
19 \V/j c [07 dc[a y] (B) - { Clamp(y; =+ /8’[0, 1]) otherwise
de—1
20: March through the breakpoints to find i | > y;(/B) <r
j=0
21: Find Bopt € [Bi—1,8i] by solving Equation (4.28) in [39]

22: 'return reorder(y” (Bopt) , P)|
23: end function

B. Le Gal

ICASSP 2016 - Implementation of Signal Processing Systems

March 23,2016

Comparison with traditional LDPC decoding algorithms

13

From a decoding point of view CN processing
consume more than 80% of the execution time

Execution time profiling of a « naiye »> ADMM software implementation (% of the total decoding time)

Code —1.5dB || SNR=2dB

Proj. Sort VN CN Proj. Sort
576 x 288 53 38.5 16 84 50 41
1152 x 288 60 45 15 85 59 44
2304 x 1152 54 36 16 84 49 38.5
2640 x 1320 52 38 17 83 47.5 41
4000 x 2000 51 38 18 82 46 41.5

Execution time profiling obtained thanks to X. Liu open-source C++ ADMM decoder sites.google.com/site/xishuoliu/codes.

B. Le Gal

ICASSP 2016 - Implementation of Signal Processing Systems

March 23,2016

Comparison with traditional LDPC decoding algorithms

14

Execution time profiling of a « naive > ADM

Euclidian projection is more than
60% of the CN processing time

software implementation (% of the total decoding time)

Code I || SNR=2dB

VN VN CN Proj. Sort
576 x 288 15 16 84 50 41
1152 x 288 14 15 85 59 44
2304 x 1152 15 16 84 49 38.5
2640 x 1320 15 17 83 47.5 41
4000 x 2000 15 18 82 46 41.5

Execution time profiling obtained thanks to X. Liu open-source C++ ADMM decoder sites.google.com/site/xishuoliu/codes.

B. Le Gal

ICASSP 2016 - Implementation of Signal Processing Systems

March 23,2016

Comparison with traditional LDPC decoding algorithms

Both data sorting task consumes
80% of the Euclidian projection time

Execution time profiling of a « naive »> ADMM softw§re implementation (% of the total decoding time)

Code I SNR=1.5dB SNR=2dB

VN CN Proj. CN Proj. Sort
576 x 288 15 85 53 84 50 41
1152 x 288 14 86 60 85 59 44
2304 x 1152 15 86 54 84 49 38.5
2640 x 1320 15 85 52 83 47.5 41
4000 x 2000 15 85 51 82 46 41.5

Execution time profiling obtained thanks to X. Liu open-source C++ ADMM decoder sites.google.com/site/xishuoliu/codes.

I5 B. Le Gal

ICASSP 2016 - Implementation of Signal Processing Systems

March 23,2016

Software iml:)lementation of the ADMM-12
decoding algorit]nms

B. Le Gal ICASSP 2016 - Implementation of Signal Processing Systems March 23,2016

Features of targeted multi-core architecture (Intel Core-i7)

® Work focuses on multicore (Intel x86),

- Efficient as (or more than) GPUs for ECCs [5, 6], REGI [AT | A2 | A3 | Ad
+
® Two parallel programming features, REG2 | B1 | B2 | B3 | B4
- SIMD programming model Pzﬁiteilo;/e
(Single Instruction, Multiple Data), - . . -
REG1 C1 Cc2 C3 C4
- SPMT/MPMT programming model)
(Single Program, Multiple Threads), REG3 D1 1 b2 | 03 | Da
, : Parallel
® Targeted INTEL Core-i/7 device: aivision
\ \ \ \/
- SIMD => 8 floats can be processed per cycle; rect1 | E1 | E2 | E3 | E4
- SPMT => 4 physical processor cores (sum) Parallel tree
addition
® |Implementation challenges, rRegi | F1] 2 [2 [2
- Take advantage of parallelization features (extr) Mo cost float
(usage rate of SIMD and SPMT) cores; extraction
- Minimize computation complexity and fREG | D1

memory footprint.

[5] B. Le Gal, C. Leroux and C. Jego. Multi-Gb/s software decoding of Polar Codes. IEEE Transactions on Signal Processing, pages 349 — 359, January 2015.
[6] B. Le Gal and C. Jego. High-throughput multi-core LDPC decoders based on x86 processor. IEEE Transactions on Parallel and Distributed Systems, May 2015.

17 B. Le Gal ICASSP 2016 - Implementation of Signal Processing Systems March 23,2016

The parallelism levels available for SIMD parallelization

() (v) (v) (vs) (v+) (v:) (¥) (¥ An « easy » parallelization is possible inside CN and VN

elements. For instance, compute all in/out messages in
parallel using SIMD feature.

However, efficiency depends on CN/VN degree.

Co C1 Ca Cs

Vi)(Va)(Vs)(Va)(Vs) (Vs

A « more complex » parallelization is also possible across O
CN and VN. For instance, execute the same computations
with data from 8 different CNs.

Needs an offline computation and message reordering.

Co C: Ca Cs

Tanner graph representation.

Vo Vi Ve Vs Vi M Vs Ve V-

An another « quite easy » parallelization way consists in
decoding multiple frames in parallel with SIMD feature.

However, complex conditional statements in Euclidian
o o s s projection discard this approach for SIMD parallelization.

B. Le Gal ICASSP 2016 - Implementation of Signal Processing Systems March 23,2016

The first (naive) decoder implementation

@ In Ist implementation parallelization
was performed inside CNs/VNs,

® For VN elements,

Semi-// sum of message input messages,

Seq. message generations,

® For CN elements,
Semi-// Wi computations from messages,

Semi-parallel Euclidian projection,

Semi-// message generation, _ _
wi=px L+ (1= p)a ™ 4 A
® Speed-up the processing but, i 2 =1p,, (W)
L koo
- Usage rate of SIMD unit is lower than 100%, Ajri = Wi = Zi
. L(.k)- = ((.k?)),_()\(_k)),
» VN degree usually in {2, 3,4 6}, n j—i = \Fj)i j /i

» CN degree usually in {6,7,8, |1, 12},

- Some processing parts (eg. sorting) generate or
process scalar results and cannot be parallelized.

B. Le Gal ICASSP 2016 - Implementation of Signal Processing Systems March 23,2016

The second (improved) decoder implementation

® In 2nd implementation parallelization

e
inside and across CNs/VNs, >
N A SRR
S LN 3 . N _ LLR;\ _ «a
® For VN elements, = T \ B | (Z(Ag +25) ==,) p
) . q T 2c¢
= Fully-// sum of message input messages, 2 3 degyy —77
—r l__'l v
=> Fully-// message generations, |
® For CN elements,
= Fully-// Wi computation and message,
Semi-parallel Euclidian projection, w;=pxL{ . +(1- p)zj(-k_l) +)\g.’“_l)

V' Fully-// st data sorting (done before projection),

= Fully-// message generation,

— decj (w)

)\k

J—1

k k
LS—)M = (Z]())i

=W — %

(k)
-),

® Speed-up the processing but, =
v Usage rate of SIMD unit is often equal to 100%,

Some processing parts remain un-parallelized,

B. Le Gal ICASSP 2016 - Implementation of Signal Processing Systems

March 23,2016

Common optimizations for the parallelization approaches

The both sort processing that are sequential
tasks were optimized in terms of latency.

Selection of the best data sorting algorithm
according to the need (value, position).

Algorithm 2 Projection to the convex polytope.

1: function PROJECTION(z; : float values)

2: if Vj € [0,dc[,z; <0 then
3: return {0,0,..., 0}
4: else if Vj € [0,d.[,z; > 1 then
5: return {1,1,...,1}
6: end if
7: {z",p"} = Sort in Ascending Order and Store Positions ()
8: "¢ = clamp(2", [0, 1])
de—1
9: cp= > ai°
i=0

10: £ =lep) — lep) mod 2
¥ de—1

11: sc= > x— 3 =z
i=0

i=f4+1
12: if sc < r then
13: return reorder({z"¢,p"})
14: end if o1 g <
€T — 1
15: Vj e [0,def,y; = igl;"“’) otine;wfise
16: {y",p"} = Sort in Ascending Order and Store Positions (y)
17: Set Bmaz = 5(UFi1 — Yfi2)
18: Construct a set of breakpoints B = {y; | 0 < i < dc_1;0 <
Y < Bmas}

clamp(y] — 8,00, 1]) if j < f

190 ¥ e 0.l) = { Gamnd L 301 Bierviee

de—1
20: March throu, gh the breakpoints to find i | > y;(8) <r
j=0
21: Find Bopt € [Bi—1, Bi] by solving Equation (4.28) in [39]
22: return reorder(y” (Bopt) , P")

23: end function

» 302 » 412

% 300 [— % 400 | N

>)

Q Q

G S

o o

_ag 200 | — E

% Lo1 % 200 —

o) 131

=z 1007 e 87

S Y 59

B | | | | | B 0" | | | |
SO 0B oot (@dD _det SO 0B coft (WaP det
* mge‘f;)‘gé%@ BB & x&%i,g‘g}g S Sk O

Fig. 2. Average number of cycles of (a) Reference sorting functions
of 6 floats (b) Sorting functions of 6 floats keeping input positions.

Euclidian projection was implemented and accelerated thanks to
SIMD feature, however:

- Reach only a partial SIMD usage (degc is often < SIMD width);
- Requiers horizontal computations that are slow in SIMD mode.

- Parts cannot be parallelized using SIMD (scalar or sequential processing).

B. Le Gal

ICASSP 2016 - Implementation of Signal Processing Systems March 23,2016

The parallelism levels available for SPMD parallelization

® INTEL Core-i7 has many physical ADMM LDPC decoder 1
cores having each a SIMD unit,

® Processing different VN/CN in //,

Necessitate costly synchronization at runtime,

One decoder per
physical core

- Reduce the decoder throughput compared to a
single thread implementation.

® Processing different frames in //,

v No synchronization required during decoding, {iinadene | i Wi Wi it S|
PR [SR { bt ! Display;
DMl and ~

v Easily sciable to other multicore targets, e | Cache o el

Increase memory footprint (cache misses),

ICASSP 2016 - Implementation of Signal Processing Systems March 23,2016

Experi ments

B. Le Gal ICASSP 2016 - Implementation of Signal Processing Systems March 23,2016

The targeted platform for experiments (a laptop computer)

® Evaluation plateform,
v INTEL Haswell Core-i7 4960HQ CPU,
v 4 Physical Cores (PC) and 4 Logical Cores (LC),

v Turbo boost @3.6GHz when one core is
switched on 3.4GHz otherwise.

v 256 KB of L2 cache, 6 MB of L3 cache,

|

g

® Software decoders are compiled with
Intel C++ compiler 2016,

® Experimental setup, e s
V' |IEEE 802.16e (2304 x 1152 and 576 x 288),

v 200 decoding iterations are executed (max.),

V' 32b floating point data format.

ICASSP 2016 - Implementation of Signal Processing Systems March 23,2016

Measure of the ADMM-I2 decoder throughputs

Throughput (Mbps)

Fig. 4. Average number of iterations Vs throughput evolution (a)

—— Throughput
—e— Iterations

Ey/No (dB)

4200

150

100

50

iterations
Throughput (Mbps)

—— Throughput

e Tterations Evaluation on a single processor core

{150

Throughput increases according to the SNR
value thanks to the stopping criterion

100

iterations

50 Throughputs reach about 3Mbps@2.0dB and
up to 6Mbps@4.0dB for both codes

Bv/No (@B) Low throughputs for low SNR values due to
the high number of executed iterations

2304 x 1152 LDPC code (b) 576 x 288 LDPC code.

B. Le Gal

ICASSP 2016 - Implementation of Signal Processing Systems March 23,2016

Measure of the ADMM-I2 decoder throughputs

30

. —&6— 1 thread —4— 1 thread
Evaluation on P processor cores & 2 threads | 80]| & 2 threads
—@— 4 threads —@— 4 threads

8 threads 8 threads

> 20| > |
Throughputs scale quite well with the amount § i § 20|
of physical processor cores [1 => 4] z . N

et e V

xP speed-up are not strictly reached due to L3 i i

cache pollution between processor cores -2l
T T S—
8 core experiment shows that logical cores Es/No (dB) By /No (dB)

slightly improve the decoding throughput

Fig. 3. ADMM-I; optimized decoder measured throughputs wrt the
number of threads (a) 2304 x 1152 code (b) 576 x 288 code.

B. Le Gal ICASSP 2016 - Implementation of Signal Processing Systems March 23,2016

Conclusion & Future works

B. Le Gal ICASSP 2016 - Implementation of Signal Processing Systems March 23,2016

Current work conclusion

® ADMM-I2 algorithm is of great interest
due to its high correction

performances, &
® ADMM-I2 is composed of massively &
. - -
parallel computations, "
~ Flooding schedule makes parallelization quite '
straightforward,
® ADMM-I2 has a high-computation 1
complexity of the CN kernels,

~ Mainly due to Euclidian projection,

® Throughput performances are

honorable on x86 target for medium
SNR values.

Continuous research effort to reach higher
throughputs for a large set of applications !

Sources in open-source : http://github.com/blegal

28 B. Le Gal ICASSP 2016 - Implementation of Signal Processing Systems March 23,2016

http://github.com/blegal

Since the submission ... & future works

® Reducing the decoding computation
complexity,

- Layered scheduling technique
(horizontal [7] or vertical [8]),

- Simplifying the Euclidian projection processing 727

® Switching to many-core devices ?

- More computation parallelism but other
hardware constraints to manage:

e Instruction replay,

e Memory latency, etc.

® Switching to hardware design !

- ADMM works well with float values not yet with
fixed-point ones...

[7] 1. Debbabi, B. Le Gal, N. Khouja, F. Tlili and C. Jego. Fast Converging ADMM Penalized Algorithm for LDPC Decoding. IEEE Communication Letters, February 2016.

[8] I. Debbabi, B. Le Gal, N. Khouja, F. Tlili and C. Jego, Comparison of different schedulings for the ADMM based LDPC decoding, Submitted to the International Symposium
on Turbo Codes & Iterative Information Processing, Brest France, September 2016.

29 B. Le Gal ICASSP 2016 - Implementation of Signal Processing Systems March 23,2016

