

SJTU Cross Media Language Intelligence Lab と海気通大學熟媒教演員智術實施室

LatticeBART: Lattice-to-Lattice pre-training for Speech Recognition

Lingfeng Dai, Lu Chen[†], Zhikai Zhou, Kai Yu[†] X-LANCE Lab, Department of Computer Science and Engineering MoE Key Lab of Artificial Intelligence, Al Institute, Shanghai Jiao Tong University Shanghai Jiao Tong University, Shanghai, China

Poster number: 8432

Motivation

- WFST-based ASR systems are still widely-used.
- The direct output of WFST-based ASR systems is hard to read.
 - Missing punctuation
 - Without capitalization
 - Containing recognition errors
- The post-processing system is needed.
 - Rule-based
 - Sequence-to-sequence (seq2seq) model

Highlights

LatticeBART (proposed) can:

- use the knowledgeable pre-trained language models like BART.
- be pre-trained in a lattice-to-lattice (L2L) unsupervised method.

Lattice Process Methods

• Using line-graph method to convert edgelabeled lattice to node-labeled lattice.

- Using topological sorting to obtain a sequence of nodes
- Adding forward-backward, marginal scores
- Adding lattice mask and lattice positional embedding

$$\mathbf{H_i} = Softmax \left(\frac{\mathbf{Q_i}\mathbf{K_i^T}}{\sqrt{d_k}} + \mathbf{S} + \mathbf{M} \right) \left(\mathbf{V_i} + \mathbf{mZ} \right)$$

Training Method

- Lattice-to-Sequence training
- Lattice-to-Lattice pre-training
- Add noise to the inputs of encoder:
 - Homophone substitution
 - Token masking
 - Path masking
 - Depth offset

Node index

(1) Token sequence, X

(2) Marginal score, m

<s> that that 's way wait too to a early </s>

1.0 0.3 0.7 0.7 0.72 0.28 0.14 0.58 0.28 1.0 1.0

1 1 2 2 3 3 3

(5) Lattice mask, M

- Weights perturbation
- Using causal lattice mask to the decoder

Performance comparison of models with small-scale data.

Experiments Setup

- ASR system
 - Phone-based CTC ASR system
 - 5-layer BiLSTM acoustic model with hidden size of 320 is trained on SWBD 300 hours speech
 - 3-gram language model is trained on SWBD-Fisher 2000 hours transcripts
- Test on: eval2000, rt03
- LatticeBART
 - Use BART-base parameters (6-layer encoder and 6-layer decoder)
 - Learning rate: 1e-5
 - Control group with random initialized parameters
 - Learning rate: 1e-4
 - AdamW optimizer with cosine learning rate decay

Table 1. WER (%) results on eval2000 and rt03.

	Model	eval2000		rt03		Ave
	Mouel	Callhome	SWBD	Fisher	SWBD	Avg.
1	lattice best path	22.5	12.4	17.1	26.0	19.5
2	10-best rescore	23.0	12.6	17.3	26.1	19.8
3	20-best rescore	22.9	12.6	17.3	26.1	19.7
4	$L2S_{20\%}^{*}$	22.9	13.3	17.6	26.4	20.1
5	$L2S_{100\%}^{*}$	21.1	12.2	15.9	24.4	18.4
6	L2S _{20%}	21.4	11.5	15.9	24.6	18.4
7	$L2S_{100\%}$	19.1	10.0	13.7	22.4	16.3
8	$L2L_{20\%} \rightarrow L2S_{20\%}$	20.1	10.5	14.8	23.8	17.3
9	$L2L_{80\%} \rightarrow L2S_{20\%}$	20.1	10.6	14.7	23.6	17.3

Table 2. Effect of different beam widths on WER (%).

Beam	eval2000		rt03		Ανα
width	Callhome	SWBD	Fisher	SWBD	Avg.
1	21.0	10.9	15.5	24.1	17.9
2	20.3	10.5	14.7	23.2	17.2
3	19.3	10.2	14.2	22.7	16.6
4	19.1	10.0	13.7	22.4	16.3
5	18.9	10.0	13.7	22.2	16.2
6	18.7	9.9	13.6	22.1	16.1