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Motivation

* WFST-based ASR systems are still widely-used.
* The direct output of WFST-based ASR systems

is hard to read.

* Missing punctuation

*  Without capitalization

+ Containing recognition errors
* The post-processing system is needed.

* Rule-based

» Sequence-to-sequence (seg2seq) model

Highlights
LatticeBART (proposed) can:
+ use the knowledgeable pre-trained language
models like BART.
* be pre-trained in a lattice-to-lattice (L2L)
unsupervised method.

Lattice Process Methods
* Using line-graph method to convert edge-
labeled lattice to node-labeled lattice.

Convert the node-labeled to the data format

that can be input into the LatticeBART.

« Using topological sorting to obtain a
sequence of nodes

* Adding forward-backward, marginal scores

* Adding lattice mask and lattice positional
embedding
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Training Method
Lattice-to-Sequence training
Lattice-to-Lattice pre-training
» Add noise to the inputs of encoder:

* Homophone substitution
* Token masking
+ Path masking
+ Depth offset
*  Weights perturbation
* Using causal lattice mask to the decoder
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Performance comparison of models with

small-scale data.
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Experiments Setup
ASR system
* Phone-based CTC ASR system
+ 5-layer BiLSTM acoustic model with
hidden size of 320 is trained on SWBD
300 hours speech
« 3-gram language model is trained on
SWBD-Fisher 2000 hours transcripts
Test on: eval2000, rt03
LatticeBART
+ Use BART-base parameters (6-layer
encoder and 6-layer decoder)
* Learning rate: 1e-5
* Control group with random initialized
parameters
* Learning rate: 1e-4
* AdamW optimizer with cosine learning rate
decay

Table 1. WER (%) results on eval2000 and rt03.

eval2000 rt03

Model Callhome | SWBD | Fisher | SWBD | A%
1 | lattice best path 22.5 12.4 17.1 26.0 19.5
2 | 10-best rescore 23.0 12.6 17.3 26.1 19.8
3 | 20-best rescore 229 12.6 17.3 26.1 19.7
4 | L2S5 229 133 17.6 264 20.1
5 | L2STo0% 21.1 12.2 15.9 24.4 18.4
6 | L2Sq0y 214 115 159 24.6 18.4
7 | L2S100% 19.1 10.0 13.7 224 16.3
8 | L2Logy — L2Sa0y 20.1 10.5 14.8 23.8 173
9 | L2Lgoy — L2Sa0% 20.1 10.6 14.7 23.6 173

Table 2. Effect of different beam widths on WER (%).
Beam eval2000 rt03

width [ Callhome | SWBD | Fisher | SWBD | A&
1 21.0 10.9 15.5 24.1 17.9
2 203 105 147 | 232 | 172
3 19.3 102 | 142 | 227 | 166
4 19.1 10.0 137 | 224 | 163
5 18.9 10.0 137 | 222 | 162
6 18.7 9.9 13.6 22.1 16.1




