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The `0-penalized least-squares
problem



Sparse-linear problem

Ingredients of the problem :

• An observation y ∈ Rm

• A dictionary A = [ai ]ni=1 ∈ Rm×n (columns ≡ atoms)

Objectives :

• Approximate the observation as a linear combination of the atoms

• The linear combination must be sparse

Problem
Find x sparse such that y ' Ax

The vector x weights each atom in the approximation.
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`0-penalized problem

Idea : Solve the problem

`0-penalized least-squares

p? =

{
min 1

2‖y − Ax‖22 + λ‖x‖0
s.t. ‖x‖∞ ≤ M

(P)

where λ > 0 is a tuning parameter and M is a big-enough constant.

Problem (P) reformulation−−−−−−−−→ Mixed-Integer Program

Properties :

• Quadratic objective
• Linear constraints
• Continuous and integer variables
• Combinatorial problem
• Can be addressed with Branch-and-Bound (Branch-and-Bound

(BnB)) algorithms
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Branch-and-bound algorithms



Branch-and-bound principle

Idea :

• Enumerate all feasible solutions
• Use rules to discard irrelevant candidates
→ In a nutshell : explore a decision tree and prune uninteresting nodes

Node ν = (S0,S1, S̄) where :

• S0 : indices of x fixed to zero
• S1 : indices of x fixed to non-zero
• S̄ : indices not fixed yet

ν(0)

ν(1)

ν(3) ν(4)

ν(2)

ν(5) ν(6)

xi1 = 0

xi2 = 0 xi2 6= 0

xi1 6= 0

xi2 = 0 xi2 6= 0
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Processing node ν = (S0,S1, S̄)

Question : Does any global solution matches the current constraints ?

Relaxed problem at node ν

pνl =

{
min 1

2‖y − Ax‖22 + λ
M ‖xS̄‖1 + λ|S1|

s.t. ‖x‖∞ ≤ M, xS0 = 0
(Pνl )

Let pu be an upper bound on p?. If pu < pνl , then no optimizers of (P)
can match the constraints of node ν.
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Exploration and pruning process
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Node-screening tests



Dual problem

Question : Is it possible to detect nodes that cannot yield a global
optimizers without processing them ?

Dual problem at node ν

max
u∈Rm

{
Dν(u) , 1

2‖y‖
2
2− 1

2‖y−u‖
2
2−

∑
i∈S̄

[γ(aT
i u)]+−

∑
i∈S1

γ(aT
i u)

}
(Dν)

• One common term

• Terms corresponding to the current constraints

• The “pivot” function is defined as γ(t) = M|t| − λ
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Dual objective link

Direct consequence : The objective of two consecutive nodes differs
from one term.

Dual objective link
At node ν, let i be an unfixed index. Then ∀u ∈ Rm,

Dν∪{xi=0}(u) = Dν(u) + [γ(aT
i u)]+

Dν∪{xi 6=0}(u) = Dν(u) + [γ(aT
i u)]−

• ∀u, Dν(u) ≤ pνl : the dual objective can also be used to prune nodes.

• At a given node, we may be able to prune subnodes without
processing them.
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Node-screening test

Node-screening test
Given an upper bound pu on p? and a dual point u ∈ Rm,

Dν(u) + [γ(aT
i u)]+ > pu =⇒ Fix xi 6= 0 at node ν

Dν(u) + [γ(aT
i u)]− > pu =⇒ Fix xi = 0 at node ν

Practical use : If a node-screening test is passed at node ν, one can
immediately fix a new variable at this node.

Nesting property : If multiple node-screening tests are passed, the
corresponding variables can be fixed simultaneously.
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Consequence of passing a node-screening test

ν(0)

ν(1)

ν(3) ν(4)

ν(2)

ν(5) ν(6)

xi1 = 0

xi2 = 0 xi2 6= 0

xi1 6= 0

xi2 = 0 xi2 6= 0

L0-screening
Fix xi1 = 0
Fix xi2 = 0

Consequence : Less nodes are explored by the BnB algorithm.
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Some numerical results



Some numerical results

Synthetic setups :

1. Generate the dictionary randomly (low or high correlation)
2. Generate a k-sparse vector x?

3. Set y = Ax?+ noise
4. Tune λ and M to (hopefully) recover x? by solving (P)

Methods compared : CPLEX (commercial solver), a tailored BnB and a
tailored BnB with node-screening tests.

CPLEX BnB BnB+scr
Corr. Sparsity Nodes Time Nodes Time Nodes Time

k = 3 16 13.13 19 0.29 15 0.18
k = 5 96 25.89 70 1.5 56 0.75

Lo
w

k = 7 292 60.84 180 5.14 152 3.02

k = 3 76 1.73 79 0.38 60 0.26
k = 5 1,424 10.18 965 6.39 725 4.18

H
ig

h

k = 7 17,647 106.45 10,461 79.29 7,881 52.16
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