Node-screening tests for the ℓ_0 -penalized least-squares problem

Theo Guyard*, Cedric Herzet[†], Clement Elvira[‡] ICASSP 2022

* Univ Rennes, INSA Rennes, CNRS, IRMAR-UMR 6625, F-35000 Rennes, France
[†] INRIA Rennes-Bretagne Atlantique, Campus de Beaulieu, 35000 Rennes, France
[‡] SCEE/IETR UMR CNRS 6164, CentraleSupélec, 35510 Cesson Sévigné, France

- 1. The $\ell_0\text{-penalized}$ least-squares problem
- 2. Branch-and-bound algorithms
- 3. Node-screening tests
- 4. Some numerical results

The ℓ_0 -penalized least-squares problem

Sparse-linear problem

Ingredients of the problem :

- An observation $y \in \mathbb{R}^m$
- A dictionary $A = [a_i]_{i=1}^n \in \mathbb{R}^{m \times n}$ (columns \equiv atoms)

Sparse-linear problem

Ingredients of the problem :

- An observation $y \in \mathbb{R}^m$
- A dictionary $A = [a_i]_{i=1}^n \in \mathbb{R}^{m \times n}$ (columns \equiv atoms)

Objectives :

- Approximate the observation as a linear combination of the atoms
- The linear combination must be *sparse*

Sparse-linear problem

Ingredients of the problem :

- An observation $y \in \mathbb{R}^m$
- A dictionary $A = [a_i]_{i=1}^n \in \mathbb{R}^{m \times n}$ (columns \equiv atoms)

Objectives :

- Approximate the observation as a linear combination of the atoms
- The linear combination must be sparse

Problem

Find x *sparse* such that $y \simeq Ax$

The vector x weights each atom in the approximation.

ℓ_0 -penalized problem

Idea : Solve the problem

 ℓ_0 -penalized least-squares

$$p^{\star} = \begin{cases} \min \quad \frac{1}{2} \|\mathbf{y} - \mathbf{A}\mathbf{x}\|_{2}^{2} + \lambda \|\mathbf{x}\|_{0} \\ \text{s.t.} \quad \|\mathbf{x}\|_{\infty} \leq M \end{cases}$$
(P)

where $\lambda > 0$ is a tuning parameter and M is a big-enough constant.

ℓ_0 -penalized problem

Idea : Solve the problem

 ℓ_0 -penalized least-squares

$$p^{\star} = \begin{cases} \min \quad \frac{1}{2} \|\mathbf{y} - \mathbf{A}\mathbf{x}\|_{2}^{2} + \lambda \|\mathbf{x}\|_{0} \\ \text{s.t.} \quad \|\mathbf{x}\|_{\infty} \leq M \end{cases}$$
(P)

where $\lambda > 0$ is a tuning parameter and M is a big-enough constant.

Problem (P) $\xrightarrow{reformulation}$ Mixed-Integer Program

ℓ_0 -penalized problem

Idea : Solve the problem

 ℓ_0 -penalized least-squares

$$p^{\star} = \begin{cases} \min \quad \frac{1}{2} \|\mathbf{y} - \mathbf{A}\mathbf{x}\|_{2}^{2} + \lambda \|\mathbf{x}\|_{0} \\ \text{s.t.} \quad \|\mathbf{x}\|_{\infty} \leq M \end{cases}$$
(P)

where $\lambda > 0$ is a tuning parameter and M is a big-enough constant.

Problem (P) $\xrightarrow{\text{reformulation}}$ Mixed-Integer Program

Properties :

- Quadratic objective
- Linear constraints
- Continuous and integer variables
- Combinatorial problem
- Can be addressed with Branch-and-Bound (BnB) algorithms

Branch-and-bound algorithms

Branch-and-bound principle

Idea :

- Enumerate all feasible solutions
- Use rules to discard irrelevant candidates
- $\rightarrow\,$ In a nutshell : explore a decision tree and prune uninteresting nodes

Branch-and-bound principle

Idea :

- Enumerate all feasible solutions
- Use rules to discard irrelevant candidates
- $\rightarrow\,$ In a nutshell : explore a decision tree and prune uninteresting nodes

Node $\nu = (\mathcal{S}_0, \mathcal{S}_1, \overline{\mathcal{S}})$ where :

- \mathcal{S}_0 : indices of x fixed to zero
- \mathcal{S}_1 : indices of x fixed to non-zero
- $\bar{\mathcal{S}}$: indices not fixed yet

Branch-and-bound principle

Idea :

- Enumerate all feasible solutions
- Use rules to discard irrelevant candidates
- $\rightarrow\,$ In a nutshell : explore a decision tree and prune uninteresting nodes

Node $\nu = (\mathcal{S}_0, \mathcal{S}_1, \bar{\mathcal{S}})$ where :

- \mathcal{S}_0 : indices of x fixed to zero
- \mathcal{S}_1 : indices of x fixed to non-zero
- $\bar{\mathcal{S}}$: indices not fixed yet

Question : Does any global solution matches the current constraints ?

Question : Does any global solution matches the current constraints ?

Relaxed problem at node ν

$$p_{I}^{\nu} = \begin{cases} \min & \frac{1}{2} \| y - A x \|_{2}^{2} + \frac{\lambda}{M} \| x_{\bar{S}} \|_{1} + \lambda |S_{1}| \\ \text{s.t.} & \| x \|_{\infty} \le M, \ x_{S_{0}} = 0 \end{cases}$$
 (P_{I}^{\nu})

Let p_u be an upper bound on p^* . If $p_u < p_l^{\nu}$, then no optimizers of (*P*) can match the constraints of node ν .

Exploration and pruning process

Exploration and pruning process

Node-screening tests

Question : Is it possible to detect nodes that cannot yield a global optimizers without processing them ?

Question : Is it possible to detect nodes that cannot yield a global optimizers without processing them ?

Dual problem at node ν

$$\max_{\mathsf{u}\in\mathbb{R}^m} \left\{ \mathrm{D}^{\nu}(\mathsf{u}) \triangleq \frac{1}{2} \|\mathsf{y}\|_2^2 - \frac{1}{2} \|\mathsf{y}-\mathsf{u}\|_2^2 - \sum_{i\in\bar{\mathcal{S}}} [\gamma(\mathsf{a}_i^\mathsf{T}\mathsf{u})]_+ - \sum_{i\in\mathcal{S}_1} \gamma(\mathsf{a}_i^\mathsf{T}\mathsf{u}) \right\} \ (D^{\nu})$$

Question : Is it possible to detect nodes that cannot yield a global optimizers without processing them ?

Dual problem at node ν

$$\max_{\mathsf{u}\in\mathbb{R}^m} \left\{ \mathrm{D}^{\nu}(\mathsf{u}) \triangleq \frac{1}{2} \|\mathsf{y}\|_2^2 - \frac{1}{2} \|\mathsf{y}-\mathsf{u}\|_2^2 - \sum_{i\in\bar{\mathcal{S}}} [\gamma(\mathsf{a}_i^\mathsf{T}\mathsf{u})]_+ - \sum_{i\in\mathcal{S}_1} \gamma(\mathsf{a}_i^\mathsf{T}\mathsf{u}) \right\} \ (D^{\nu})$$

- One common term
- Terms corresponding to the current constraints
- The "pivot" function is defined as $\gamma(t) = M|t| \lambda$

Direct consequence : The objective of two consecutive nodes differs from one term.

Direct consequence : The objective of two consecutive nodes differs from one term.

Dual objective link

At node ν , let *i* be an unfixed index. Then $\forall u \in \mathbb{R}^m$,

$$\begin{split} \mathrm{D}^{\nu \cup \{x_i=0\}}(\mathsf{u}) &= \mathrm{D}^{\nu}(\mathsf{u}) + [\gamma(\mathsf{a}_i^\mathsf{T}\mathsf{u})]_+ \\ \mathrm{D}^{\nu \cup \{x_i\neq 0\}}(\mathsf{u}) &= \mathrm{D}^{\nu}(\mathsf{u}) + [\gamma(\mathsf{a}_i^\mathsf{T}\mathsf{u})]_- \end{split}$$

Direct consequence : The objective of two consecutive nodes differs from one term.

Dual objective link

At node ν , let *i* be an unfixed index. Then $\forall u \in \mathbb{R}^m$,

$$\begin{split} \mathrm{D}^{\nu \cup \{x_i=0\}}(\mathsf{u}) &= \mathrm{D}^{\nu}(\mathsf{u}) + [\gamma(\mathsf{a}_i^\mathsf{T}\mathsf{u})]_+ \\ \mathrm{D}^{\nu \cup \{x_i\neq 0\}}(\mathsf{u}) &= \mathrm{D}^{\nu}(\mathsf{u}) + [\gamma(\mathsf{a}_i^\mathsf{T}\mathsf{u})]_- \end{split}$$

- $\forall u, D^{\nu}(u) \leq p_{l}^{\nu}$: the dual objective can also be used to prune nodes.
- At a given node, we may be able to prune subnodes without processing them.

Node-screening test

Given an upper bound p_u on p^* and a dual point $u \in \mathbb{R}^m$,

$$\begin{split} \mathrm{D}^{\nu}(\mathbf{u}) + [\gamma(\mathbf{a}_i^{\mathsf{T}}\mathbf{u})]_+ > p_u & \Longrightarrow & \mathsf{Fix} \; x_i \neq 0 \; \mathsf{at} \; \mathsf{node} \; \nu \\ \mathrm{D}^{\nu}(\mathbf{u}) + [\gamma(\mathbf{a}_i^{\mathsf{T}}\mathbf{u})]_- > p_u & \Longrightarrow & \mathsf{Fix} \; x_i = 0 \; \mathsf{at} \; \mathsf{node} \; \nu \end{split}$$

Node-screening test

Given an upper bound p_u on p^* and a dual point $u \in \mathbb{R}^m$,

$$D^{\nu}(\mathbf{u}) + [\gamma(\mathbf{a}_{i}^{\mathsf{T}}\mathbf{u})]_{+} > p_{u} \implies \text{Fix } x_{i} \neq 0 \text{ at node } \nu$$
$$D^{\nu}(\mathbf{u}) + [\gamma(\mathbf{a}_{i}^{\mathsf{T}}\mathbf{u})]_{-} > p_{u} \implies \text{Fix } x_{i} = 0 \text{ at node } \nu$$

Practical use : If a node-screening test is passed at node ν , one can immediately fix a new variable at this node.

Node-screening test

Given an upper bound p_u on p^* and a dual point $u \in \mathbb{R}^m$,

$$\begin{split} \mathrm{D}^{\nu}(\mathbf{u}) + [\gamma(\mathsf{a}_{i}^{\mathsf{T}}\mathbf{u})]_{+} > p_{u} & \Longrightarrow & \mathsf{Fix} \; x_{i} \neq 0 \; \mathsf{at} \; \mathsf{node} \; \nu \\ \mathrm{D}^{\nu}(\mathbf{u}) + [\gamma(\mathsf{a}_{i}^{\mathsf{T}}\mathbf{u})]_{-} > p_{u} & \Longrightarrow & \mathsf{Fix} \; x_{i} = 0 \; \mathsf{at} \; \mathsf{node} \; \nu \end{split}$$

Practical use : If a node-screening test is passed at node ν , one can immediately fix a new variable at this node.

Nesting property : If multiple node-screening tests are passed, the corresponding variables can be fixed simultaneously.

Consequence of passing a node-screening test

Consequence : Less nodes are explored by the BnB algorithm.

Synthetic setups :

- 1. Generate the dictionary randomly (low or high correlation)
- 2. Generate a k-sparse vector x^*
- 3. Set $y = Ax^* + noise$
- 4. Tune λ and M to (hopefully) recover x^{*} by solving (P)

Synthetic setups :

- 1. Generate the dictionary randomly (low or high correlation)
- 2. Generate a k-sparse vector x^*
- 3. Set $y = Ax^* + noise$
- 4. Tune λ and M to (hopefully) recover x^{*} by solving (P)

Methods compared : CPLEX (commercial solver), a tailored BnB and a tailored BnB with node-screening tests.

Synthetic setups :

- 1. Generate the dictionary randomly (low or high correlation)
- 2. Generate a k-sparse vector x^*
- 3. Set $y = Ax^* + noise$
- 4. Tune λ and M to (hopefully) recover x^{*} by solving (P)

Methods compared : CPLEX (commercial solver), a tailored BnB and a tailored BnB with node-screening tests.

		CPLEX		BnB		BnB+scr	
Corr.	Sparsity	Nodes	Time	Nodes	Time	Nodes	Time
Low	k = 3	16	13.13	19	0.29	15	0.18
	<i>k</i> = 5	96	25.89	70	1.5	56	0.75
	k = 7	292	60.84	180	5.14	152	3.02
High	k = 3	76	1.73	79	0.38	60	0.26
	<i>k</i> = 5	1,424	10.18	965	6.39	725	4.18
	k = 7	17,647	106.45	10,461	79.29	7,881	52.16