Node-screening tests for the ℓ_{0}-penalized least-squares problem

Theo Guyard*, Cedric Herzet ${ }^{\dagger}$, Clement Elvira ${ }^{\ddagger}$
ICASSP 2022

* Univ Rennes, INSA Rennes, CNRS, IRMAR-UMR 6625, F-35000 Rennes, France
\dagger INRIA Rennes-Bretagne Atlantique, Campus de Beaulieu, 35000 Rennes, France
\ddagger SCEE/IETR UMR CNRS 6164, CentraleSupélec, 35510 Cesson Sévigné, France

Table of contents

1. The ℓ_{0}-penalized least-squares problem
2. Branch-and-bound algorithms
3. Node-screening tests
4. Some numerical results

The ℓ_{0}-penalized least-squares problem

Sparse-linear problem

Ingredients of the problem :

- An observation $y \in \mathbb{R}^{m}$
- A dictionary $\mathrm{A}=\left[\mathrm{a}_{i}\right]_{i=1}^{n} \in \mathbb{R}^{m \times n}$ (columns \equiv atoms)

Sparse-linear problem

Ingredients of the problem :

- An observation $y \in \mathbb{R}^{m}$
- A dictionary $\mathrm{A}=\left[\mathrm{a}_{i}\right]_{i=1}^{n} \in \mathbb{R}^{m \times n}$ (columns \equiv atoms)

Objectives :

- Approximate the observation as a linear combination of the atoms
- The linear combination must be sparse

Sparse-linear problem

Ingredients of the problem :

- An observation $y \in \mathbb{R}^{m}$
- A dictionary $\mathrm{A}=\left[\mathrm{a}_{i}\right]_{i=1}^{n} \in \mathbb{R}^{m \times n}$ (columns \equiv atoms)

Objectives :

- Approximate the observation as a linear combination of the atoms
- The linear combination must be sparse

Problem

Find x sparse such that $y \simeq A x$

The vector x weights each atom in the approximation.

ℓ_{0}-penalized problem

Idea : Solve the problem

ℓ_{0}-penalized least-squares

$$
p^{\star}=\left\{\begin{array}{cl}
\min & \frac{1}{2}\|y-\mathrm{Ax}\|_{2}^{2}+\lambda\|x\|_{0} \tag{P}\\
\text { s.t. } & \|\mathrm{x}\|_{\infty} \leq M
\end{array}\right.
$$

where $\lambda>0$ is a tuning parameter and M is a big-enough constant.

ℓ_{0}-penalized problem

Idea : Solve the problem

ℓ_{0}-penalized least-squares

$$
p^{\star}=\left\{\begin{array}{cl}
\min & \frac{1}{2}\|\mathrm{y}-\mathrm{Ax}\|_{2}^{2}+\lambda\|x\|_{0} \tag{P}\\
\text { s.t. } & \|\mathrm{x}\|_{\infty} \leq M
\end{array}\right.
$$

where $\lambda>0$ is a tuning parameter and M is a big-enough constant.

$$
\text { Problem }(P) \quad \xrightarrow{\text { reformulation }} \quad \text { Mixed-Integer Program }
$$

ℓ_{0}-penalized problem

Idea : Solve the problem

ℓ_{0}-penalized least-squares

$$
p^{\star}=\left\{\begin{array}{cl}
\min & \frac{1}{2}\|\mathrm{y}-\mathrm{Ax}\|_{2}^{2}+\lambda\|x\|_{0} \tag{P}\\
\text { s.t. } & \|\mathrm{x}\|_{\infty} \leq M
\end{array}\right.
$$

where $\lambda>0$ is a tuning parameter and M is a big-enough constant.

$$
\text { Problem }(P) \quad \xrightarrow{\text { reformulation }} \text { Mixed-Integer Program }
$$

Properties :

- Quadratic objective
- Linear constraints
- Continuous and integer variables
- Combinatorial problem
- Can be addressed with Branch-and-Bound (BnB) algorithms

Branch-and-bound algorithms

Branch-and-bound principle

Idea :

- Enumerate all feasible solutions
- Use rules to discard irrelevant candidates
\rightarrow In a nutshell : explore a decision tree and prune uninteresting nodes

Branch-and-bound principle

Idea :

- Enumerate all feasible solutions
- Use rules to discard irrelevant candidates
\rightarrow In a nutshell : explore a decision tree and prune uninteresting nodes
Node $\nu=\left(\mathcal{S}_{0}, \mathcal{S}_{1}, \overline{\mathcal{S}}\right)$ where :
- \mathcal{S}_{0} : indices of \times fixed to zero
- \mathcal{S}_{1} : indices of x fixed to non-zero
- $\overline{\mathcal{S}}$: indices not fixed yet

Branch-and-bound principle

Idea :

- Enumerate all feasible solutions
- Use rules to discard irrelevant candidates
\rightarrow In a nutshell : explore a decision tree and prune uninteresting nodes
Node $\nu=\left(\mathcal{S}_{0}, \mathcal{S}_{1}, \overline{\mathcal{S}}\right)$ where :
- \mathcal{S}_{0} : indices of x fixed to zero
- \mathcal{S}_{1} : indices of x fixed to non-zero
- $\overline{\mathcal{S}}$: indices not fixed yet

Processing node $\nu=\left(\mathcal{S}_{0}, \mathcal{S}_{1}, \overline{\mathcal{S}}\right)$

Question : Does any global solution matches the current constraints ?

Processing node $\nu=\left(\mathcal{S}_{0}, \mathcal{S}_{1}, \overline{\mathcal{S}}\right)$

Question : Does any global solution matches the current constraints ?

Relaxed problem at node ν

$$
p_{l}^{\nu}=\left\{\begin{array}{cl}
\min & \frac{1}{2}\|\mathrm{y}-\mathrm{Ax}\|_{2}^{2}+\frac{\lambda}{M}\left\|\mathrm{x}_{\bar{s}}\right\|_{1}+\lambda\left|\mathcal{S}_{1}\right| \tag{l}\\
\text { s.t. } & \|\mathrm{x}\|_{\infty} \leq M, \mathrm{x}_{\mathcal{S}_{0}}=0
\end{array}\right.
$$

Let p_{u} be an upper bound on p^{\star}. If $p_{u}<p_{l}^{\nu}$, then no optimizers of (P) can match the constraints of node ν.

Exploration and pruning process

Exploration and pruning process

Node-screening tests

Dual problem

Question : Is it possible to detect nodes that cannot yield a global optimizers without processing them ?

Dual problem

Question : Is it possible to detect nodes that cannot yield a global optimizers without processing them ?

Dual problem at node ν

$$
\max _{\mathrm{u} \in \mathbb{R}^{m}}\left\{\mathrm{D}^{\nu}(\mathrm{u}) \triangleq \frac{1}{2}\|\mathrm{y}\|_{2}^{2}-\frac{1}{2}\|\mathrm{y}-\mathrm{u}\|_{2}^{2}-\sum_{i \in \overline{\mathcal{S}}}\left[\gamma\left(\mathrm{a}_{i}^{\top} \mathrm{u}\right)\right]_{+}-\sum_{i \in \mathcal{S}_{1}} \gamma\left(\mathrm{a}_{i}^{\top} \mathrm{u}\right)\right\}\left(D^{\nu}\right)
$$

Dual problem

Question : Is it possible to detect nodes that cannot yield a global optimizers without processing them ?

Dual problem at node ν

$$
\max _{u \in \mathbb{R}^{m}}\left\{\mathrm{D}^{\nu}(\mathrm{u}) \triangleq \frac{1}{2}\|\mathrm{y}\|_{2}^{2}-\frac{1}{2}\|\mathrm{y}-\mathrm{u}\|_{2}^{2}-\sum_{i \in \overline{\mathcal{S}}}\left[\gamma\left(\mathrm{a}_{i}^{\top} \mathrm{u}\right)\right]_{+}-\sum_{i \in \mathcal{S}_{1}} \gamma\left(\mathrm{a}_{i}^{\top} \mathrm{u}\right)\right\}\left(D^{\nu}\right)
$$

- One common term
- Terms corresponding to the current constraints
- The "pivot" function is defined as $\gamma(t)=M|t|-\lambda$

Dual objective link

Direct consequence : The objective of two consecutive nodes differs from one term.

Dual objective link

Direct consequence : The objective of two consecutive nodes differs from one term.

Dual objective link

At node ν, let i be an unfixed index. Then $\forall u \in \mathbb{R}^{m}$,

$$
\begin{aligned}
& \mathrm{D}^{\nu \cup\left\{x_{i}=0\right\}}(\mathrm{u})=\mathrm{D}^{\nu}(\mathrm{u})+\left[\gamma\left(\mathrm{a}_{i}^{\top} \mathrm{u}\right)\right]_{+} \\
& \mathrm{D}^{\nu \cup\left\{x_{i} \neq 0\right\}}(\mathrm{u})=\mathrm{D}^{\nu}(\mathrm{u})+\left[\gamma\left(\mathrm{a}_{i}^{\top} \mathrm{u}\right)\right]_{-}
\end{aligned}
$$

Dual objective link

Direct consequence : The objective of two consecutive nodes differs from one term.

Dual objective link

At node ν, let i be an unfixed index. Then $\forall u \in \mathbb{R}^{m}$,

$$
\begin{aligned}
& \mathrm{D}^{\nu \cup\left\{x_{i}=0\right\}}(\mathrm{u})=\mathrm{D}^{\nu}(\mathrm{u})+\left[\gamma\left(\mathrm{a}_{i}^{\top} \mathrm{u}\right)\right]_{+} \\
& \mathrm{D}^{\nu \cup\left\{\mathrm{x}_{\mathrm{i}} \neq 0\right\}}(\mathrm{u})=\mathrm{D}^{\nu}(\mathrm{u})+\left[\gamma\left(\mathrm{a}_{i}^{\top} \mathrm{u}\right)\right]_{-}
\end{aligned}
$$

- $\forall \mathrm{u}, \mathrm{D}^{\nu}(\mathrm{u}) \leq p_{l}^{\nu}$: the dual objective can also be used to prune nodes.
- At a given node, we may be able to prune subnodes without processing them.

Node-screening test

Node-screening test

Given an upper bound p_{u} on p^{\star} and a dual point $u \in \mathbb{R}^{m}$,

$$
\begin{array}{lll}
\mathrm{D}^{\nu}(\mathrm{u})+\left[\gamma\left(\mathrm{a}_{i}^{\top} \mathrm{u}\right)\right]_{+}>p_{u} & \Longrightarrow \quad \text { Fix } x_{i} \neq 0 \text { at node } \nu \\
\mathrm{D}^{\nu}(\mathrm{u})+\left[\gamma\left(\mathrm{a}_{i}^{\top} \mathrm{u}\right)\right]_{-}>p_{u} & \Longrightarrow \quad \text { Fix } x_{i}=0 \text { at node } \nu
\end{array}
$$

Node-screening test

Node-screening test

Given an upper bound p_{u} on p^{\star} and a dual point $u \in \mathbb{R}^{m}$,

$$
\begin{array}{lll}
\mathrm{D}^{\nu}(\mathrm{u})+\left[\gamma\left(\mathrm{a}_{i}^{\top} \mathrm{u}\right)\right]_{+}>p_{u} & \Longrightarrow \quad \text { Fix } x_{i} \neq 0 \text { at node } \nu \\
\mathrm{D}^{\nu}(\mathrm{u})+\left[\gamma\left(\mathrm{a}_{i}^{\top} \mathrm{u}\right)\right]_{-}>p_{u} & \Longrightarrow \quad \text { Fix } x_{i}=0 \text { at node } \nu
\end{array}
$$

Practical use : If a node-screening test is passed at node ν, one can immediately fix a new variable at this node.

Node-screening test

Node-screening test

Given an upper bound p_{u} on p^{\star} and a dual point $u \in \mathbb{R}^{m}$,

$$
\begin{array}{lll}
\mathrm{D}^{\nu}(\mathrm{u})+\left[\gamma\left(\mathrm{a}_{i}^{\top} \mathrm{u}\right)\right]_{+}>p_{u} & \Longrightarrow \quad \text { Fix } x_{i} \neq 0 \text { at node } \nu \\
\mathrm{D}^{\nu}(\mathrm{u})+\left[\gamma\left(\mathrm{a}_{i}^{\top} \mathrm{u}\right)\right]_{-}>p_{u} & \Longrightarrow \quad \text { Fix } x_{i}=0 \text { at node } \nu
\end{array}
$$

Practical use : If a node-screening test is passed at node ν, one can immediately fix a new variable at this node.

Nesting property : If multiple node-screening tests are passed, the corresponding variables can be fixed simultaneously.

Consequence of passing a node-screening test

Consequence : Less nodes are explored by the BnB algorithm.

Some numerical results

Some numerical results

Synthetic setups :

1. Generate the dictionary randomly (low or high correlation)
2. Generate a k-sparse vector x^{\star}
3. Set $y=A x^{\star}+$ noise
4. Tune λ and M to (hopefully) recover x^{\star} by solving (P)

Some numerical results

Synthetic setups :

1. Generate the dictionary randomly (low or high correlation)
2. Generate a k-sparse vector x^{\star}
3. Set $y=A x^{\star}+$ noise
4. Tune λ and M to (hopefully) recover x^{\star} by solving (P)

Methods compared : CPLEX (commercial solver), a tailored BnB and a tailored BnB with node-screening tests.

Some numerical results

Synthetic setups :

1. Generate the dictionary randomly (low or high correlation)
2. Generate a k-sparse vector x^{\star}
3. Set $y=A x^{\star}+$ noise
4. Tune λ and M to (hopefully) recover x^{\star} by solving (P)

Methods compared : CPLEX (commercial solver), a tailored BnB and a tailored BnB with node-screening tests.

Corr.	Sparsity	CPLEX		BnB		$\mathrm{BnB}+\mathrm{scr}$	
		Nodes	Time	Nodes	Time	Nodes	Time
3	$k=3$	16	13.13	19	0.29	15	0.18
	$k=5$	96	25.89	70	1.5	56	0.75
	$k=7$	292	60.84	180	5.14	152	3.02
$\frac{\frac{1}{600}}{\underline{1}}$	$k=3$	76	1.73	79	0.38	60	0.26
	$k=5$	1,424	10.18	965	6.39	725	4.18
	$k=7$	17,647	106.45	10,461	79.29	7,881	52.16

