
Node-screening tests for the `0-penalized least-squares problem
Théo Guyard?, Cédric Herzet†, Clément Elvira‡

?Applied Mathematics Department, INSA Rennes, France | †SIMSMART team, INRIA Rennes-Bretagne Atlantique, France | ‡SCEE team, CentraleSupelec Rennes, France

Objectives

Reduce the optimization time of a Branch-and-
Bound (BnB) solving the `0-penalized least-
squares problem by detecting nodes of the
search tree that cannot yield a global optimizer.

Introduction

Finding a sparse representation is a fundamental
problem in the field of statistics, machine learning
and inverse problems, among others. It consists
in decomposing some input vector y ∈ Rm as a
linear combination of a few columns of a dictionary
A ∈ Rm×n. This task can be addressed by solving

p? =
min 1

2‖y−Ax‖2
2 + λ‖x‖0

s.t. ‖x‖∞ ≤M
(P)

where ‖x‖0 counts the number of non-zeros in x,
λ > 0 is a tuning parameter and M is a large con-
stant. Interestingly, (P) can be reformulated as a
Mixed-Integer Program by introducing binary vari-
ables encoding the nullity of x entries. It has been
shown to be solvable for moderate-size problems by
commercial solvers or tailored BnB algorithms.

Atamtürk and Gómez recently extended the no-
tion of screening introduced by El Ghaoui et al.
from convex sparse problems to `0-penalized prob-
lems. Their methodology allows to detect the po-
sitions of some zero and non-zero entries in the
minimizers of a problem similar to (P) so as to re-
duce the problem dimensionality in preprocessing.

We make one step forward in the development
of numerical methods addressing large-scale `0-
penalized problems by proposing node-screening
rules allowing to prune nodes within the BnB
search tree. Moreover, we emphasize the existence
of a nesting property between our node-screening
tests at different nodes. This enables to prune
multiple nodes at any step of the optimization pro-
cess with a marginal cost.

BnB procedures

Particularized to problem (P), a BnB can be
interpreted as a search tree where a new decision
regarding the nullity of an entry of the variable x
is taken at each node. A node of the tree corre-
sponds to a triplet ν = (S0,S1, S̄) where S0 and
S1 contain the indices of x which are forced to be
zero and non-zero and where S̄ gathers all the un-
fixed indices of x. Starting from a root node with
S0 = S1 = ∅, the BnB alternates between process-
ing the current node and selecting a new node. Its
efficiency depends on the number of nodes treated
and on the ability to process them efficiently.

When processing node ν = (S0,S1, S̄), we
prospect if any x with zeros on S0 and non-zeros
on S1 can yield a global minimizer of (P). To that
end, we impose these constraints on (P) and solve

pνl =
min 1

2‖y−Ax‖2
2 + λ

M‖xS̄‖1 + λ|S1|
s.t. ‖x‖∞ ≤M, xS0 = 0 (P ν

l)

which is a relaxation of the problem obtained. The
above problem is a constrained LASSO and can be
solved in polynomial time.

Then, we compare pνl to the best known upper
bound pu on p?. It pνl > pu, then node ν cannot
yield a global optimizer of (P) and can therefore be
pruned. The bound pu is obtained by constructing
feasible solutions to (P) at each node. If the node
is not pruned, the tree exploration goes on. When
all nodes have been either explored or pruned, the
BnB algorithm stops and any candidate yielding
the best upper bound pu is a minimizer of (P).

Node-screening tests

Our node-screening methodology aims at iden-
tifying nodes of the BnB tree that cannot yield a
global optimizer of (P). In particular, we leverage
properties of the Fenchel dual of (P ν

l) given by

max
{

Dν
l (u) = 1

2‖y‖
2
2 − 1

2‖y− u‖2
2

−
∑
i∈S̄

[γi(u)]+ −
∑
i∈S1

γi(u)
} (Dν

l)

with [w]+ = max(w, 0) and γi(u) = M |AT
i u|−λ.

Note that the objective of (Dν
l) is composed of a

term common to all nodes and terms corresponding
to the current fixed variables. Thus, it only differs
from one term between two consecutive nodes. A
direct consequence is the following result.

Node-screening tests

At node ν = (S0,S1, S̄), ∀i ∈ S̄ and ∀u,
• If Dν

l (u) + [γi(u)]+ > pu, then index i can
be safely swapped from S̄ to S1.
• If Dν

l (u) + [−γi(u)]+ > pu, then index i
can be safely swapped from S̄ to S0.

Stated otherwise, node-screening tests poten-
tially allow to fix new variables at node ν, i.e., to
prune nodes of the BnB tree without having to pro-
cess them. Furthermore, they can be implemented
in a very efficient way withinmost solution method
tailored to (P ν

l). Hence, our methodology allows to
prune nodes without any additional complexity.

ν(0)

ν(1)

ν(3) ν(4)

ν(2)

ν(5) ν(6)

xi1 = 0

xi2 = 0 xi2 6= 0

xi1 6= 0

xi2 = 0 xi2 6= 0

(a) BnB search tree. Node ν(0) is the root node. Other nodes
correspond to different choices of S0 and S1.

ν(0)

ν(1)

ν(3) ν(4)

ν(2)

ν(5) ν(6)

xi1 = 0

xi2 = 0 xi2 6= 0

xi1 6= 0

xi2 = 0 xi2 6= 0

Node-screening
Fix xi1 = 0
Fix xi2 = 0

(b) Impact of node-screening on the BnB. Node-screening tests
are passed at ν(0), allowing to discard a part of the tree.

Numerical results

To assess our methodology, we compare three
different algorithmic solutions to address (P) :
• A direct solution method using CPLEX
• A tailored BnB algorithm
• A tailored BnB algorithm with node-screening

To generate problem data, we consider the two
following setups : 1) The elements of A are i.i.d.
realizations of gaussian distribution. 2) A has a
Toeplitz structure with shifted versions of a sinc
curve. We set (m,n) to (500, 100) for Gaussian
dictionaries and to (500, 300) for Toeplitz dictio-
naries. Then, we sample a k-sparse vector x0 with
k ∈ {5, 7, 9} and we set y = Ax0 + ε where ε cor-
responds to a 10dB noise. The values of λ and M
are tuned statistically to recover x0 when solving
(P). Results are averaged over 100 instances.

Direct BnB BnB+scr
k N T F N T F N T F
5 96 25.9 0 70 1.5 0 56 0.7 0
7 292 60.8 0 180 5.1 0 152 3.0 0

G
au

ss
ia
n

9 781 102.6 10 483 15.6 0 412 9.8 0
5 1,424 10.2 0 965 6.4 0 725 4.2 0
7 17,647 106.5 0 10,461 79.3 0 7,881 52.2 0

Tœ
pl
itz

9 80,694 353.4 50 47,828 346.4 48 41,166 267.0 40
Table: Number of nodes explored (N), solving time in sec
(T) and number of instances not solved within 103 sec (F).

One observes that BnB+scr outperforms the two
other methods on all scenarii. We also note that,
compared to BnB, the reduction in the optimiza-
tion time is more significant than the reduction in
the number of nodes processed. A thorough ex-
amination of our results indicates that the process-
ing step is performed all the faster as many vari-
ables are fixed to zero in (P ν

l). Our node-screening
methodology allows to reach quickly nodes where
the bounding step is performed with a lower com-
putational cost. The overall solving time is there-
fore even more reduced.

Paper ID : 2482

