## Screen \& Relax

Accelerating the resolution of the Elastic-Net by safe identification of the solution support

Theo Guyard ${ }^{\star}$, Cedric Herzet ${ }^{\dagger}$, Clement Elvira ${ }^{\ddagger}$
ICASSP 2022

* Univ Rennes, INSA Rennes, CNRS, IRMAR-UMR 6625, F-35000 Rennes, France
$\dagger$ INRIA Rennes-Bretagne Atlantique, Campus de Beaulieu, 35000 Rennes, France
$\ddagger$ SCEE/IETR UMR CNRS 6164, CentraleSupélec, 35510 Cesson Sévigné, France


## Table of contents

1. The Elastic-Net problem
2. Screening and relaxing tests
3. Dimensionality reduction
4. Some numerical results

## The Elastic-Net problem

## Sparse-linear problem

Ingredients :

- An observation $y \in R^{m}$
- A dictionary $\mathrm{A}=\left[\mathrm{a}_{i}\right]_{i=1}^{n} \in \mathrm{R}^{m \times n}$ (columns $\equiv$ atoms)


## Sparse-linear problem

## Ingredients :

- An observation $y \in R^{m}$
- A dictionary $\mathrm{A}=\left[\mathrm{a}_{i}\right]_{i=1}^{n} \in \mathrm{R}^{m \times n}$ (columns $\equiv$ atoms)


## Objectives :

- Approximate the observation as a linear combination of the atoms
- The linear combination must be sparse


## Sparse-linear problem

## Ingredients :

- An observation $y \in R^{m}$
- A dictionary $\mathrm{A}=\left[\mathrm{a}_{i}\right]_{i=1}^{n} \in \mathrm{R}^{m \times n}$ (columns $\equiv$ atoms)


## Objectives :

- Approximate the observation as a linear combination of the atoms
- The linear combination must be sparse


## Problem

Find $x$ sparse such that $y \simeq A x$

## Sparse-linear problem

## Ingredients :

- An observation $y \in R^{m}$
- A dictionary $\mathrm{A}=\left[\mathrm{a}_{i}\right]_{i=1}^{n} \in \mathrm{R}^{m \times n}$ (columns $\equiv$ atoms)


## Objectives :

- Approximate the observation as a linear combination of the atoms
- The linear combination must be sparse


## Problem

Find $x$ sparse such that $y \simeq A x$

The vector x weights each atom in the approximation.

## The Elastic-net problem

Idea : Consider the problem

## Elastic-net

$$
\begin{equation*}
\mathrm{x}^{\star}=\operatorname{argmin}_{x}\left\{\mathrm{P}(\mathrm{x})=\frac{1}{2}\|\mathrm{y}-\mathrm{Ax}\|_{2}^{2}+\lambda\|\mathrm{x}\|_{1}+\frac{\gamma}{2}\|x\|_{2}^{2}\right\} \tag{P}
\end{equation*}
$$

where $\lambda>0$ and $\gamma>0$ are two hyperparameters.

## The Elastic-net problem

Idea: Consider the problem

## Elastic-net

$$
\begin{equation*}
x^{\star}=\operatorname{argmin}_{x}\left\{P(x)=\frac{1}{2}\|y-A x\|_{2}^{2}+\lambda\|x\|_{1}+\frac{\gamma}{2}\|x\|_{2}^{2}\right\} \tag{P}
\end{equation*}
$$

where $\lambda>0$ and $\gamma>0$ are two hyperparameters.

## Properties:

- Ensures a good approximation
- Induces sparsity
- Good statistical properties
- Convex problem


## Screening and relaxing tests

## Main idea

## Sparse problem :

- Where are zero entries of $x^{\star}$ ?
- Where are non-zero entries of $x^{\star}$ ?


## Main idea

## Sparse problem :

- Where are zero entries of $\mathrm{x}^{\star}$ ?
- Where are non-zero entries of $x^{\star}$ ?
- Can we accelerate solution methods using this knowledge ?


## Main idea

## Sparse problem :

- Where are zero entries of $x^{*}$ ?
- Where are non-zero entries of $x^{\star}$ ?
- Can we accelerate solution methods using this knowledge ?
$\rightarrow$ Spoiler alert: yes !
$\rightarrow$ We can leverage duality and optimality conditions


## Main idea

## Sparse problem :

- Where are zero entries of $x^{\star}$ ?
- Where are non-zero entries of $x^{\star}$ ?
- Can we accelerate solution methods using this knowledge ?
$\rightarrow$ Spoiler alert: yes!
$\rightarrow$ We can leverage duality and optimality conditions


## Fenchel dual of $(\mathcal{P})$

$$
\begin{equation*}
\mathrm{u}^{\star}=\operatorname{argmax}_{\mathrm{u}}\left\{\mathrm{D}(\mathrm{u})=\frac{1}{2}\|y\|_{2}^{2}-\frac{1}{2}\|\mathrm{y}-\mathrm{u}\|_{2}^{2}-\frac{1}{2 \gamma}\left\|\left[\left|\mathrm{~A}^{\top} \mathrm{u}\right|-\lambda\right]_{+}\right\|_{2}^{2}\right\} \tag{D}
\end{equation*}
$$

## Screening and relaxing tests

Optimality conditions :

$$
\begin{aligned}
& \left|\mathrm{a}_{i}^{\mathrm{T}} \mathrm{u}^{\star}\right| \leq \lambda \quad \Longleftrightarrow \quad x^{\star}(i)=0 \\
& \left|\mathrm{a}_{i}^{\mathrm{T}} \mathrm{u}^{\star}\right|>\lambda \quad \Longleftrightarrow \quad x^{\star}(i) \neq 0
\end{aligned}
$$

## Screening and relaxing tests

## Optimality conditions :

$$
\begin{aligned}
& \left|\mathrm{a}_{i}^{\mathrm{T}} \mathrm{u}^{\star}\right| \leq \lambda \quad \Longleftrightarrow \quad \mathrm{x}^{\star}(i)=0 \\
& \left|\mathrm{a}_{i}^{\mathrm{T}} \mathrm{u}^{\star}\right|>\lambda \quad \Longleftrightarrow \quad \mathrm{x}^{\star}(i) \neq 0
\end{aligned}
$$

$$
\mathfrak{\imath}
$$

Relaxed optimality condition : Let $\mathbb{S}(u, r)$ be a spherical region containing $\mathrm{u}^{\star}$, then

$$
\begin{array}{llll}
\left|\mathrm{a}_{i}^{\mathrm{T}} \mathrm{u}\right|+r<\lambda & \Longrightarrow & \mathrm{x}^{\star}(i)=0 & \text { (screening test) } \\
\left|\mathrm{a}_{i}^{\mathrm{T}} \mathbf{u}\right|-r>\lambda & \Longrightarrow \quad \mathrm{x}^{\star}(i) \neq 0 & \text { (relaxing test) }
\end{array}
$$

Dimensionality reduction

## Problem reduction

## With screening test

Zero entries of $x^{\star}$ can be discarded from the problem without changing the objective value.

## Problem reduction

## With screening test

Zero entries of $x^{\star}$ can be discarded from the problem without changing the objective value.

## With relaxing test

Nonzero entries of $x^{\star}$ can be expressed as a linear combination of all the other entries.

## Problem reformulation

Let $\left(\mathcal{S}_{0}, \mathcal{S}_{ \pm}, \mathcal{S}_{*}\right)$ be subsets of zero, non-zero and unclassified indices of $\mathrm{x}^{\star}$ :

$$
x^{\star}=\operatorname{argmin}_{x}\left\{\mathrm{P}(\mathrm{x})=\frac{1}{2}\|y-\mathrm{Ax}\|_{2}^{2}+\lambda\|x\|_{1}+\frac{\gamma}{2}\|x\|_{2}^{2}\right\}
$$

## Problem reformulation

Let $\left(\mathcal{S}_{0}, \mathcal{S}_{ \pm}, \mathcal{S}_{*}\right)$ be subsets of zero, non-zero and unclassified indices of $x^{\star}$ :

$$
\mathrm{x}^{\star}=\operatorname{argmin}_{x}\left\{\mathrm{P}(\mathrm{x})=\frac{1}{2}\|y-\mathrm{Ax}\|_{2}^{2}+\lambda\|\mathrm{x}\|_{1}+\frac{\gamma}{2}\|\mathrm{x}\|_{2}^{2}\right\}
$$

Solve an $n$ dimensional problem

## Problem reformulation

Let $\left(\mathcal{S}_{0}, \mathcal{S}_{ \pm}, \mathcal{S}_{*}\right)$ be subsets of zero, non-zero and unclassified indices of $x^{\star}$ :

$$
\mathrm{x}^{\star}=\operatorname{argmin}_{x}\left\{\mathrm{P}(\mathrm{x})=\frac{1}{2}\|y-\mathrm{Ax}\|_{2}^{2}+\lambda\|\mathrm{x}\|_{1}+\frac{\gamma}{2}\|\mathrm{x}\|_{2}^{2}\right\}
$$

Solve an $n$ dimensional problem

$$
\begin{aligned}
& \\
x_{\mathcal{S}_{*}}^{\star} & =\operatorname{argmin}_{\mathrm{x}}\left\{\tilde{\mathrm{P}}(\mathrm{x})=\frac{1}{2}\|\tilde{y}-\tilde{A} \mathrm{x}\|_{2}^{2}+\lambda\|\mathrm{x}\|_{1}+\frac{\gamma}{2}\|\mathrm{x}\|_{\mathrm{M}}^{2}\right\} \\
\mathrm{x}_{\mathcal{S}_{ \pm}}^{\star} & =B \mathrm{x}_{\mathcal{S}_{*}}^{\star}+\mathrm{b} \\
\mathrm{x}_{S_{0}}^{\star} & =0
\end{aligned}
$$

## Problem reformulation

Let $\left(\mathcal{S}_{0}, \mathcal{S}_{ \pm}, \mathcal{S}_{*}\right)$ be subsets of zero, non-zero and unclassified indices of $\mathrm{x}^{\star}$ :

$$
\mathrm{x}^{\star}=\operatorname{argmin}_{x}\left\{\mathrm{P}(\mathrm{x})=\frac{1}{2}\|y-\mathrm{Ax}\|_{2}^{2}+\lambda\|\mathrm{x}\|_{1}+\frac{\gamma}{2}\|\mathrm{x}\|_{2}^{2}\right\}
$$

## Solve an $n$ dimensional problem

$$
\begin{aligned}
& \mathfrak{l} \\
x_{\mathcal{S}_{*}}^{\star} & =\operatorname{argmin}_{x}\left\{\tilde{\mathrm{P}}(\mathrm{x})=\frac{1}{2}\|\tilde{y}-\tilde{A} \times\|_{2}^{2}+\lambda\|x\|_{1}+\frac{\gamma}{2}\|x\|_{\mathrm{M}}^{2}\right\} \\
\mathrm{x}_{\mathcal{S}_{ \pm}}^{\star} & =B \mathrm{x}_{\mathcal{S}_{*}}^{\star}+\mathrm{b} \\
\mathrm{x}_{\mathcal{S}_{0}} & =0
\end{aligned}
$$

- Compute $\tilde{y}, ~ \tilde{A}, \mathrm{M}, \mathrm{B}$ and b (linear algebra operations)
- Solve an $n-\left|\mathcal{S}_{0}\right|-\left|\mathcal{S}_{ \pm}\right|$dimensional problem


## Dynamic Screen \& Relax principle

```
Algorithm 1: "Screen \& Relax" solving procedure
Input: \({ }^{(0)}, \mathrm{A}, \mathrm{y}, \lambda, \gamma\)
\(1\left(\mathcal{S}_{0}, \mathcal{S}_{ \pm}, \mathcal{S}_{*}\right) \leftarrow(\emptyset, \emptyset,\{1, \ldots, n\})\)
2 while convergence criterion is not met do
3 Update the current iterate
4 Compute a new safe sphere
5 Update \(\left(\mathcal{S}_{0}, \mathcal{S}_{ \pm}, \mathcal{S}_{*}\right)\) with screening and relaxing tests
6 Update the problem data
\(7 \quad\) if \(\mathcal{S}_{*}=\emptyset\) then
8 The solution is available in closed form
end
10 end
```


## Some numerical results

## Some numerical results

Setup : Percentage of instances solved up to a given accuracy for a fixed FLOPs budget.

## Some numerical results

Setup : Percentage of instances solved up to a given accuracy for a fixed FLOPs budget.

Low correlation


## Some numerical results

Setup : Percentage of instances solved up to a given accuracy for a fixed FLOPs budget.

$$
\begin{array}{lllllll} 
& \text { Low correlation } \\
100 \% & & \\
\hline
\end{array}
$$

## Some numerical results

Setup : Percentage of instances solved up to a given accuracy for a fixed FLOPs budget.


## Some numerical results

Setup : Percentage of instances solved up to a given accuracy for a fixed FLOPs budget.


