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The Elastic-Net problem



Sparse-linear problem

Ingredients :

• An observation y ∈ Rm

• A dictionary A = [ai ]ni=1 ∈ Rm×n (columns ≡ atoms)

Objectives :

• Approximate the observation as a linear combination of the atoms

• The linear combination must be sparse

Problem
Find x sparse such that y ' Ax

The vector x weights each atom in the approximation.
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The Elastic-net problem

Idea : Consider the problem

Elastic-net

x? = argminx

{
P(x) = 1

2‖y − Ax‖22 + λ‖x‖1 + γ
2 ‖x‖

2
2

}
(P)

where λ > 0 and γ > 0 are two hyperparameters.

Properties :

• Ensures a good approximation

• Induces sparsity

• Good statistical properties

• Convex problem
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Screening and relaxing tests



Main idea

Sparse problem :

• Where are zero entries of x? ?

• Where are non-zero entries of x? ?

• Can we accelerate solution methods using this knowledge ?

→ Spoiler alert : yes !

→ We can leverage duality and optimality conditions

Fenchel dual of (P)

u? = argmaxu

{
D(u) = 1

2‖y‖
2
2 − 1

2‖y − u‖22 − 1
2γ ‖[|A

Tu| − λ]+‖22
}

(D)
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Screening and relaxing tests

Optimality conditions :

|aT
i u

?| ≤ λ ⇐⇒ x?(i) = 0
|aT

i u
?| > λ ⇐⇒ x?(i) 6= 0

 

Relaxed optimality condition : Let S(u, r) be a spherical region
containing u?, then

|aT
i u|+ r < λ =⇒ x?(i) = 0 (screening test)
|aT

i u| − r > λ =⇒ x?(i) 6= 0 (relaxing test)
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Dimensionality reduction



Problem reduction

With screening test
Zero entries of x? can be discarded from the problem without changing
the objective value.

With relaxing test
Nonzero entries of x? can be expressed as a linear combination of all
the other entries.
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Problem reformulation

Let (S0,S±,S∗) be subsets of zero, non-zero and unclassified
indices of x? :

x? = argminx

{
P(x) = 1

2‖y − Ax‖22 + λ‖x‖1 + γ
2 ‖x‖

2
2

}

Solve an n dimensional problem

 
x?S∗ = argminx

{
P̃(x) = 1

2‖ỹ − Ãx‖22 + λ‖x‖1 + γ
2 ‖x‖

2
M

}
x?S± = Bx?S∗ + b
x?S0

= 0

• Compute ỹ, Ã, M, B and b (linear algebra operations)

• Solve an n − |S0| − |S±| dimensional problem
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Dynamic Screen & Relax principle

Algorithm 1: “Screen & Relax” solving procedure
Input: x(0), A, y, λ, γ

1 (S0,S±,S∗)← (∅, ∅, {1, . . . , n})

2 while convergence criterion is not met do
3 Update the current iterate
4 Compute a new safe sphere
5 Update (S0,S±,S∗) with screening and relaxing tests
6 Update the problem data
7 if S∗ = ∅ then
8 The solution is available in closed form
9 end

10 end
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Some numerical results



Some numerical results

Setup : Percentage of instances solved up to a given accuracy for a fixed
FLOPs budget.
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