
Screen & Relax : Accelerating the resolution of the Elastic-Net
Théo Guyard?, Cédric Herzet†, Clément Elvira‡

?Applied Mathematics Department, INSA Rennes, France | †SIMSMART team, INRIA Rennes-Bretagne Atlantique, France | ‡SCEE team, CentraleSupelec Rennes, France

Objectives
Accelerate the resolution of the Elastic-Net :
• Identification of zeros in the optimizer
• Identification of non-zeros in the optimizer
• Reduction of the problem dimension
• Reduction of the complexity burden

Introduction
Sparse decomposition aims at finding some ap-

proximation of a vector y ∈ Rm as the linear
combination of a few columns (dubbed atoms) of
a dictionary A = [A1, . . . ,An] ∈ Rm×n. Un-
fortunately, identifying the sparsest decomposition
turns out to be a NP-hard problem. A standard
strategy to circumvent this issue consists in approx-
imating this ideal decomposition as the solution of
the Elastic-Net problem :

min
x∈Rn

P (x) = 1
2‖y−Ax‖2

2 + λ‖x‖1 + γ
2‖x‖

2
2 (P)

where λ > 0 and γ > 0. The least-squares term
ensures a good approximation of y by Ax, the `1-
norm enforces sparsity and the `2-norm provides
desirable statistical properties. In the sequel, we
note x? the unique minimizer of (P).

Because of its clear practical interest, many con-
tributions of the literature have proposed efficient
solving procedures for (P). Of particular interest
in this paper is the “screening” acceleration tech-
nique proposed by El Ghaoui et al.. It consists in
performing simple tests to identify the zeros in x?.
This knowledge can then be exploited to reduce
the dimensionality of the problem by discarding
the atoms of the dictionary weighted by zero.

We introduce a dual approach to screening,
dubbed “relaxing”. Our method aims at identify-
ing the position of the non-zeros in x?. We show
that, similarly to screening, this knowledge can be
exploited to reduce the dimensionality of the target
problem and accelerate its resolution.

Dual problem
Our methodology leverages properties of the Fenchel dual problem of (P), given by

max
u∈Rm

D(u) = 1
2‖y‖

2
2 − 1

2‖y− u‖2
2 − 1

2γ‖[A
Tu− λ]+‖2

2 (D)

where [x]+ , max(0, x). We note u? the unique maximizer of (D). We also use the following relations
u? = y−Ax? (2)
x? = γ−1[|ATu?| − λ]+ (3)

deriving from optimality conditions. Combining these relations leads to the following tests.

Screening tests
Goal : Identification of zeros in x?.
Let S(u, r) be a sphere containing u?, then

∀i, |AT
i u| + r < λ =⇒ x?i = 0 (4)

Elements that have passed the above test can
be discarded safely from (P) as well as the cor-
responding columns in A.

Relaxing tests
Goal : Identification of non-zeros in x?.
Let S(u, r) be a sphere containing u?, then

∀i, |AT
i u| − r > λ =⇒ x?i 6= 0 (5)

Elements that have passed the above test can
be expressed as a linear combination of all the
other elements of x in (P).

Screen & Relax strategy
Screening and relaxing tests can be combined

and used within any iterative method tailored to
(P) to reduce its computational burden. At each
iteration, one can construct a safe sphere S(u, r)
that is tightened as iterates converge toward the so-
lution. For every element that have passed the test
(4), the corresponding index of the problem vari-
able can be discarded. Similarly, for every element
that have passed the test (5), the corresponding
index of the problem variable can be expressed in
function of all the remaining indices. Both of these
modifications result in a problem with a reduced
optimization domain where the problem data are
slightly modified. This modification can be han-
dled in an efficient way using rank-one update rules.

Ultimately, one can reach a point where all the
elements have been either screened or relaxed. In
this case, the relation (3) allows to recover x? in
closed-form and up to machine-precision.

Pseudo-code
The following algorithm summarizes our

method. Any iterative method tailored to solve
(P) can be enhanced with screening and relaxing
tests, as soon as it allows to recover a sequence
of primal iterates. The dimension of the problem
solved is progressively reduced down to zero and
ultimately, x? can be recovered exactly.

Algorithm 1: Iterative method for (P) en-
hanced with a “Screen & Relax” strategy.
Input: Problem data (A,y, λ, γ)

1 while convergence is not met do
2 Update the current iterate x(t)

3 Construct a new safe sphere S(u(t), r(t))
4 Perform the tests (4)-(5) with S(u(t), r(t))
5 Update the problem data using rank-one

rules if new elements have been screening or
relaxed

6 end

Numerical results
To assess our methodology, we compare four

different algorithmic solutions to address (P) :
• A Proximal-Gradient (PG) algorithm
• A PG algorithm with additional screening tests
• A PG algorithm with additional relaxing tests
• A PG algorithm with additional screening and

relaxing tests
We run a method with a fixed computational bud-
get on 100 different instances of (P). The curve
corresponds to the percentage ρ(τ ) of instances for
which a duality gap lower than τ is archived.

To generate problem data, we consider the two
following setups : 1) The elements of A are i.i.d.
realizations of Gaussian distribution. 2) A has a
Toeplitz structure with shifted versions of a sinc
curve. The vector y is drawn according to an
uniform distribution on the m-dimensional sphere.
We set (m,n) = (100, 300) and use (λ, γ) =
(0.5, 0.2) × ‖ATy‖∞. Each problem instance is
solved with a budget of 2 × 106 FLOPs for Gaus-
sian dictionaries and 2 × 107 FLOPs for Toeplitz
dictionaries.

We can observe that screening tests are partic-
ularly interesting with low-correlated dictionar-
ies such as Gaussian ones. In contrast, relax-
ing tests are particularly interesting with highly-
correlated dictionaries such as Toeplitz ones. Fi-
nally, note that the Screen & Relax methodology
archives machine-precision (τ = 10−16) in all the
instances solved. Indeed, x? is available in closed-
form when all the elements of x have been either
screened or relaxed.
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