RIS-aided monostatic MIMO Radar with co-located antennas

M. $Lops^2$ L. $Venturino^1$ S. $Buzzi^1$ E. $Grossi^1$

¹DIEI, Università degli Studi di Cassino e del Lazio Meridionale, Italy ²DIETI, Università di Napoli "Federico II," Italy

IEEE ICASSP 2022, Singapore

Basic contribution

- Co-located MIMO Radars emit (isotropically) orthogonal waveforms. The receiver undertakes space-time processing in order to sense the surrounding scene
- Thus an RIS—i.e., a low-consumption surface with reflecting unit capable of changing the phase of the incoming signal—placed anywhere *around* the MIMO transceiver is hit by *astray signals*, and may vary their phases in order to help the receiver exploit such an otherwise lost energy
- The basic question we want to answer is whether or not the achievable gains are worth the additional hardware required by such an architecture.

Possible configurations target target $(\bar{\theta}_s, \bar{d}_s)$ $\begin{array}{c} (\bar{\theta}_r, \bar{d}_r) \\ (\bar{\theta}_r, \ddot{d}_r) \end{array}$ $\begin{array}{c} (\bar{\theta}_s, \bar{d}_s) \\ (\bar{\theta}_s, \bar{d}_s) \end{array}$ $(\ddot{\theta}_s, \ddot{d}_s)$ radar transmitter/receiver $(\bar{\rho}_{jn}, \bar{\delta}_{jn}, \bar{\omega}_{jn})$ $(\bar{\rho}_{jn}, \bar{\delta}_{jn}, \bar{\omega}_{jn})$ $(\ddot{\rho}_{jn},\ddot{\delta}_{jn},\ddot{\omega}_{jn})$ forward/backward $(\ddot{ ho}_{jn},\ddot{\delta}_{jn},\ddot{\omega}_{jn})$ RIS forward/backward transmitter/receiver RIS (a) LOS monostatic configuration (b) NLOS monostatic configuration

3 / 12

Comments

• LOS: up to four rays can be exploited to increase the target detectability, i.e. *direct radar/target paths*: a. Radar \rightarrow Target \rightarrow Radar b. Radar \rightarrow RIS \rightarrow Target \rightarrow Radar

and *indirect paths*:

- c. Radar \rightarrow Target \rightarrow RIS \rightarrow Radar
- d. Radar \rightarrow RIS \rightarrow Target \rightarrow RIS \rightarrow Radar
- NLOS: Here the Radar may only rely on the RIS (in both forward and backward scattering modes) in order to capture the target echo

• The radar and the RIS are in the target far field. We thus define • $\bar{\boldsymbol{v}}_r$ and $\ddot{\boldsymbol{v}}_r$ the steering vectors between target and radar

System Geometrical parameters

- transmitter and receiver, respectively
- v_s is the steering vector between the RIS and the target
- $\boldsymbol{\varphi} = [\varphi_1, \dots, \varphi_{N_s}]^T$ are the RIS phase shifts;
- \overline{G} and \ddot{G} are the normalized channel matrices between radar transmitter/receiver and RIS, respectively
- $\bar{\gamma}_r$ and $\bar{\gamma}_s$ are the complex amplitudes of the forward paths between radar and target/RIS
- $\ddot{\gamma}_r$ and $\ddot{\gamma}_s$ are the complex amplitudes of the backward paths between target and radar/RIS
- $\boldsymbol{X}(\boldsymbol{\varphi}) = \operatorname{diag}(\boldsymbol{\varphi}) \in \mathbb{C}^{N_s \times N_s}$
- α encapsulates the unknown target response.

5 / 12

4 / 12

Received signal model

- For each of the \ddot{N}_r spatial channels separation between the \bar{N}_r orthogonal waveforms is undertaken
- Sampling at approximately $\frac{1}{W}$ thus yields, for each cell, $N_r = \ddot{N}_r \bar{N}_r$ space-time samples, arranged in $r \in \mathbb{C}^{N_r}$ as

$$\boldsymbol{r} = \underbrace{\left(\bar{\gamma}_r \bar{\boldsymbol{v}}_r + \bar{\gamma}_s \bar{\boldsymbol{G}} \boldsymbol{X}(\boldsymbol{\varphi}) \boldsymbol{v}_s\right) \otimes \left(\ddot{\gamma}_r \ddot{\boldsymbol{v}}_r + \ddot{\gamma}_s \ddot{\boldsymbol{G}} \boldsymbol{X}(\boldsymbol{\varphi}) \boldsymbol{v}_s\right)}_{\boldsymbol{e}(\boldsymbol{\varphi})} \alpha + \boldsymbol{w}$$

Remark: The RIS phase vector φ is the degree of freedom that can be exploited for optimization purposes

Optimization

- Let $\boldsymbol{f} \in \mathbb{C}^{N_r}$ be the unit-norm (space-time) filter employed at the receiver
- The SNR available at the radar receiver is obviously

$$\mathrm{SNR} = \left| \boldsymbol{f}^{H} \boldsymbol{e}(\boldsymbol{\varphi}) \right|^{2} \sigma_{\alpha}^{2} / \sigma_{w}^{2}$$

which is maximized for $f = \frac{e(\varphi)}{\|e(\varphi)\|}$

- The problem is now to find out the N_s optimum phases whereupon the above solution depends
- Lacking a closed-form solution, we resort to a sub-optimum solution based on optimizing one phase shift at a time (alternating maximization)

7 / 12

Performance assessment: simulated scenario

SNR gain vs target range

Matched: Nominal and true target azimuth coincide

Mismatched: Optimization is conducted at infinity

 \rightarrow co-located region

200

 \rightarrow co-located region

400

The geometry we focus upon is outlined in the figure

- Wavelength $\lambda = 10 \text{ cm} (3 \text{ GHz});$ • $\ddot{N}_r = \bar{N}_r = 4, \ N_s = 225 \ (15)$ $\times 15);$
- Each antenna element has a power beampattern with 3-dB width 120° in azimuth and of 60° in elevation.
- The target is a square of size $50 \times 50 \text{ cm}^2$.

14

12

8

(위) 10

SNR

 $\delta=2\,\,{
m m}$

 $\delta = 3 \mathrm{~m}$

 $\delta=5~{
m m}$

.... Mismatched

1000

— Matched

800

 \rightarrow co-located region

600

Target range [m]

8 / 12

 $9 \ / \ 12$

[[[[]]] 10 -20 B^e

 \square

SNR gain vs target azimuth

Two-way beampattern (nominal azimuth 45°)

 $11 \, / \, 12$

10 / 12

Comments and Conclusions

• The RIS must be placed in close proximity (in the order of meters) to the radar, since attenuation would otherwise eat out indirect rays

• if D_{max} is the maximum distance between any element of the RIS and any element of the transmit/receive radar array the two are seen as co-located if $r > 2D_{\max}^2/\lambda$: beyond this distance the optimum RIS focusing is range-independent (focusing at infinity)

• Co-located Radar and RIS yield the most significant gains

• In regard to azimuth, the largest gain is for $\theta_r^{az} = 90^\circ$, since the target sees the whole RIS aperture, while seeing smaller and smaller parts thereof as $\theta_r^{\rm az}$ approaches 0

• If there is mismatch between the nominal and the actual target azimuth the gain takes on an oscillatory behavior; in any case the presence of the RIS is almost always beneficial, since the SNR Gain (in dB) is almost always > 0