ABSTRACT

@® We revisit here the problem of time-difference-of-arrival (TDOA) based
localization under the mixed line-of-sight (LOS)/non-line-of-sight (NLOS)

propagation conditions.

@® Adopting the strategy of statistically robustifying the non-outlier-resistant [,
loss, we formulate it as the minimization of a possibly non-differentiable
generalized robust cost function, which is rooted in the analog locally
competitive algorithm (LCA) for sparse approximation.

® \We then present a Lagrange programming neural network (LPNN) to
address the optimization formulation, with the non-differentiability issues
being handled by grafting thereon the LCA concept of internal state
dynamics.

® Compared with the existing algorithms, our approach is computationally
less expensive, less reliant on the use of a priori error information, and
observed to be capable of producing higher localization accuracy.

FRAMEWORK OF LPNN

@® As a locally stable Lagrange-type neurodynamic technique [i], the
augmented LPNN is used to search for a critical point solution of the equality
constrained optimization problem (ECOP) with differentiable objective:

min f(y), s.t. h(y) = Oy
yER

with h(y) = [h{(y), ..., h); (W) ]!, by setting up its augmented Lagrangian as
M

L,(y,2)=f(y)+A"h(y) + %Z[hi 6215

where A = [, ..., Ay ]" is the Lagrange multiplier vector.

® Two types of neurons are then defined, known as the variable neurons
and Lagrangian neurons, holding y to be optimized and Lagrange multipliers
In A, respectively.

® Their time-domain behaviors are defined by 2 =-v,£,(».2) and 22 =v,£,(1.2).

OUR FORMULATION

@® A traditional [;-norm based robust formulation is [iii]:
min|lell;,

T . . .
where e = [e; 4, ...,e. 1| is @ dummy vector satisfying e;; =r;; — [Ix — x;l, +
lx —x4|| (for i =2,...,L).

® We propose to deal with an extension of it: mmz _,P(e;1), where ¥(-)

represents a generalized robust loss function, whose form is specified by the
LCA-defined thresholding function.
@® To avoid ill-posing In applying the gradient-type neurodynamic solver to

the problem, we re-express the source-sensor constraints in a quadratic form:
L

min Z¢(ei,1)»5-t-r — e = Dd, diz = |[|lx — xillg,di = Wl-z,i =1,..,L,

x,d,w,e

T
Where D = [_1L—1' I(L—l)X(L—l)]i r = [Tz’l, ...,TL’]_] ; and W = [Wl, ...,WL]T.

SIMULATION RESULTS

@® The localization performance of the LPNN approach is evaluated using
synthetic data. The robust loss is set as i . 1)(-). State-of-the-art TDOA

positioning methods with NLOS effects being countered, i.e., SDP-TOA [iv],

SDP-Robust-R1 [v], and SDP-Robust-R2 [v] are implemented for comparison.

@® The 1st configuration is deterministic, with L = 8 sensors evenly placed on

the perimeter of a 20 m x 20 m square region and a single source fixed at
= [2,3]" m, whereas the 2nd randomly generates positions of the source

and L = 10 sensors from the same area in each of 500 Monte Carlo runs.

® n; is assumed to be of constant variance ¢ for all is, and the possibly

abnormally Iarge vaIue of Clz IS randomly generated upper-bounded by a)l
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PROBLEM STATEMENT

® Our source localization (SL) scenario comprises L > k synchronized

sensors and a single source deployed in k-dimensional space.
® The known position of the ith sensor and unknown source location are

denoted by x; € R* (fori = 1, ...,L) and x € R¥, respectively.

® The source-emitted radio or acoustic signal travels over the LOS or NLOS
path, and is finally received by the ith sensor at time ¢t; (fori =1, ..., L).

® The nonredundant TDOA measurements are modeled as t;; =t; —t; =
(1 = x;ll; = llx = X4 [lp + 150 + byg)/c (fori =1,...,L).

@® c: Signal propagation velocity; n; ; = n; —ny: Measurement noise in the
TDOA-based range difference (RD) observation r;, = ct;; n; follows the
uncorrelated zero-mean Gaussian distribution; b;; = q; — q4; q;: Possible
NLOS bias occurring in the ith path without any prior statistical knowledge.

® The task of TDOA-based SL under possible NLOS propagation conditions

is to determine x given {r; ,} (possibly unreliable) and perfectly known {x;}.

FRAMEWORK OF LCA

® The LCA [ii] iIs a neural architecture aiming to solve the sparse
approximation problem by descending an energy function:

. 1
min Cs(2) = 5 llb = @2} + 8 ) W20,

where ® € R?*/ is the dictionary matrix with H < J, b € R¥ is the observation
vector, and ¥, ; 5)(2;) Is a sparsity-inducing penalty term whose specific form
Is determined by that of a smooth sigmoidal thresholding function:
lu;| — ko
T (u;) = sgn(u; .
) (04) = S8 T e el — 9))
@® It consists of /] neurons, holding the newly introduced internal state vector

u = |y, ...,u]]T instead of the sparse vector z = |z, ...,z]]T to be estimated.
® The dynamical system is established according to %:—(u—z)wT(b—cpz) and
the mapping from u to z via the thresholding function z; = Ti, ; 5y (u;).

LCA-INCORPORATED LPNN

@® The LPNN is not straightforwardly applicable since we do not premise the

robust loss on any differentiability assumption.
@ It is straightforward to settle the inapplicability of LPNN to the problem, in
a manner similar to the construction of internal state dynamics when solving
the unconstrained sparse approximation formulation using LCA.
® To be specific, letting J =L -1, z=e, 6 =1 and combining the use of
both neural systems by substituting e held in the Lagrangian neurons with u,
we have finally:

= —QZ [)‘L—lJri +p (df — |lz — wz‘”%)} (zi — ),

W= [DT M Aal”] =23 1iidi +p{ [D (r e = D)), =2 (¢ — [l — ailly) di — (di = w?) } = Dor-1s

= 2erpwi +2p (- wi)w, =1L @ Numerical complexity is O (NypnnL),
e e Ph \where Nppyy is the number of iterations.

@® Stability of LCA-incorporated LPNN remains

an open issue for future research.

dX;_ ;
- =ri1— e —di+dy, 1=2,..,L,

dAL—1+i 2 .
W= di — ||z - zill,, 1=1,..,L,

dNor,— 144 __ 2 .
G =di—w;, 1=1,...,L.

EXPERIMENTAL RESULTS

® \We also conduct tests using the real experimental data collected in a 45 m
X 60 m area outdoors by a ranging system comprising five equal-height
deployed Decawave DWM1000 modules, each of which is an IEEE 802.15 .4-
2011 UWB implementation, based on the Decawave DW1000 UWB
transceiver integrated circuit.

® While four of the modules are utilized as sensors, the one left acts as the
source to be located. 50 Monte Carlo trials are performed.

® The localization geometry is illustrated below. The true positions are
measured by a total station set up at the origin, and x;, and x,, are two

benchmarking points (BPs) for the source.

60 | | | | | | | | | | | | | | | | 1 - 1
ax; = [3.11,50.64"m 2 = [34.75,46.62] m Alg‘fthm Bl;l\fSE gg)z ‘g)e‘iage r“"];)m; (s)
7 4T X _total station / Ongm ©_source 8 _sensor| LPNN (- — 10°) | 0.09 | 0.06 | 0.054 0.063
=20l Ty I B . LPNN (7 =1) | 0.07 | 0.0 | 0.140 | _ 0.115
2

R p— —087 7 65] 3146l 7 &7 T SDP-TOA 0.10 0.07 0.788 0.777

) L 2a= 346,787 m SDP-Robust:R1 | 0.17 | 021 | 0717 0.720

s 0 s 10 15 20 25 30 35 40 SDP-Robust-R2 | 051 | 0.61 | 1.020 0.945

z (m)

i] S.Zhang and A. G. Constantinides, ~"Lagrange programming neural networks," IEEE Trans. Circuits Syst. Il: Anal. Digit. Signal Process., vol. 39, no. 7, pp. 441-452, Jul. 1992.

ii] C. J. Rozell, D. H. Johnson, R. G. Baraniuk, and B. A. Olshausen, "*Sparse coding via thresholding and local competition in neural circuits," Neural Comput., vol. 20, no. 10, pp. 2526-2563, Oct. 2008. DOI of this paper; 10.1109/LSP.2021.3082035
1ii] M. R. Gholami, S. Gezici, and E. G. Strom, ""A concave-convex procedure for TDOA based positioning," IEEE Commun. Lett., vol. 17, no. 4, pp. 765-768, Apr. 2013.

iv]Z. Su, G. Shao, and H. Liu, ~"Semidefinite programming for NLOS error mitigation in TDOA localization," [IEEE Commun. Lett., vol. 22, no. 7, pp. 1430-1433, Jul. 2018.

v] G. Wang, W. Zhu and N. Ansari, "Robust TDOA-based localization for IoT via joint source position and NLOS error estimation," IEEE Internet Things J., vol. 6, no. 5, pp. 8529-8541, Oct. 2019.

Contact the corresponding author at w.x.xiong@outlook.com



