Robust TDOA Source Localization Based on Lagrange Programming Neural Network

Wenxin Xiong*[⊙], Christian Schindelhauer[⊙], Dominik Jan Schott^{\tilde{\tii}

Department of Computer Science Department of Microsystems Engineering University of Freiburg, Freiburg 79110, Germany

*Presenter

Hing Cheung So^o

 Department of Electrical Engineering City University of Hong Kong,

Hong Kong, China

Paper Number: 9261

ABSTRACT

- We revisit here the problem of time-difference-of-arrival (TDOA) based localization under the mixed line-of-sight (LOS)/non-line-of-sight (NLOS) propagation conditions.
- lacktriangle Adopting the strategy of statistically robustifying the non-outlier-resistant l_2 loss, we formulate it as the minimization of a possibly non-differentiable generalized robust cost function, which is rooted in the analog locally competitive algorithm (LCA) for sparse approximation.
- We then present a Lagrange programming neural network (LPNN) to address the optimization formulation, with the non-differentiability issues being handled by grafting thereon the LCA concept of internal state dynamics.
- Compared with the existing algorithms, our approach is computationally less expensive, less reliant on the use of a priori error information, and observed to be capable of producing higher localization accuracy.

FRAMEWORK OF LPNN

 As a locally stable Lagrange-type neurodynamic technique [i], the augmented LPNN is used to search for a critical point solution of the equality constrained optimization problem (ECOP) with differentiable objective:

$$\min_{\mathbf{y} \in \mathbb{R}^N} f(\mathbf{y}), \quad \text{s. t. } \mathbf{h}(\mathbf{y}) = \mathbf{0}_M$$

with $h(y) = [h_1(y), ..., h_M(y)]^T$, by setting up its augmented Lagrangian as

$$\mathcal{L}_{\rho}(\mathbf{y}, \boldsymbol{\lambda}) = f(\mathbf{y}) + \boldsymbol{\lambda}^{T} \boldsymbol{h}(\mathbf{y}) + \frac{\rho}{2} \sum_{i=1}^{M} [h_{i}(\mathbf{y})]^{2},$$

where $\lambda = [\lambda_1, ..., \lambda_M]^T$ is the Lagrange multiplier vector.

- Two types of neurons are then defined, known as the variable neurons and Lagrangian neurons, holding y to be optimized and Lagrange multipliers in λ , respectively.
- Their time-domain behaviors are defined by $\frac{dy}{dt} = -\nabla_y \mathcal{L}_{\rho}(y,\lambda)$ and $\frac{d\lambda}{dt} = \nabla_{\lambda} \mathcal{L}_{\rho}(y,\lambda)$.

PROBLEM STATEMENT

- lacktriangle Our source localization (SL) scenario comprises $L \geq k$ synchronized sensors and a single source deployed in k-dimensional space.
- The known position of the *i*th sensor and unknown source location are denoted by $x_i \in \mathbb{R}^k$ (for i = 1, ..., L) and $x \in \mathbb{R}^k$, respectively.
- The source-emitted radio or acoustic signal travels over the LOS or NLOS path, and is finally received by the *i*th sensor at time t_i (for i = 1, ..., L).
- lacktriangle The nonredundant TDOA measurements are modeled as $t_{i,1}=t_i-t_1=0$ $(\|\mathbf{x} - \mathbf{x}_i\|_2 - \|\mathbf{x} - \mathbf{x}_1\|_2 + n_{i,1} + b_{i,1})/c \text{ (for } i = 1, ..., L).$
- c: Signal propagation velocity; $n_{i,1} = n_i n_1$: Measurement noise in the TDOA-based range difference (RD) observation $r_{i,1} = ct_{i,1}$; n_i follows the uncorrelated zero-mean Gaussian distribution; $b_{i,1} = q_i - q_1$; q_i : Possible NLOS bias occurring in the *i*th path without any prior statistical knowledge.
- The task of TDOA-based SL under possible NLOS propagation conditions is to determine x given $\{r_{i,1}\}$ (possibly unreliable) and perfectly known $\{x_i\}$.

FRAMEWORK OF LCA

The LCA [ii] is a neural architecture aiming to solve the sparse approximation problem by descending an energy function:

$$\min_{\mathbf{z} \in \mathbb{R}^J} \mathsf{C}_{\delta}(\mathbf{z}) \coloneqq \frac{1}{2} \|\mathbf{b} - \mathbf{\Phi}\mathbf{z}\|_2^2 + \delta \sum_{i=1}^J \psi_{(\kappa,\tau,\delta)}(z_i),$$

where $\Phi \in \mathbb{R}^{H \times J}$ is the dictionary matrix with H < J, $b \in \mathbb{R}^H$ is the observation vector, and $\psi_{(\kappa,\tau,\delta)}(z_i)$ is a sparsity-inducing penalty term whose specific form is determined by that of a smooth sigmoidal thresholding function:

$$\mathcal{T}_{(\kappa,\tau,\delta)}(u_i) = \operatorname{sgn}(u_i) \frac{|u_i| - \kappa \delta}{1 + \exp(-\tau(|u_i| - \delta))}.$$

- It consists of *J* neurons, holding the newly introduced internal state vector $\mathbf{u} = [u_1, ..., u_I]^T$ instead of the sparse vector $\mathbf{z} = [z_1, ..., z_I]^T$ to be estimated.
- The dynamical system is established according to $\frac{dz}{dt} = -(u-z) + \Phi^T(b-\Phi z)$ and the mapping from u to z via the thresholding function $z_i = \mathcal{T}_{(\kappa,\tau,\delta)}(u_i)$.

OUR FORMULATION

• A traditional l_1 -norm based robust formulation is [iii]:

where $e = [e_{2,1}, \dots, e_{L,1}]^T$ is a dummy vector satisfying $e_{i,1} = r_{i,1} - \|x - x_i\|_2 + 1$ $\|x - x_1\|_2$ (for i = 2, ..., L).

- $lackbox{ }$ We propose to deal with an extension of it: $\min_{\mathbf{r}} \sum_{i=2}^L \psi \big(e_{i,1} \big)$, where $\psi(\cdot)$ represents a generalized robust loss function, whose form is specified by the LCA-defined thresholding function.
- To avoid ill-posing in applying the gradient-type neurodynamic solver to the problem, we re-express the source-sensor constraints in a quadratic form:

$$\min_{x,d,w,e} \sum_{i=2}^{L} \psi(e_{i,1}), \text{ s. t. } \boldsymbol{r} - \boldsymbol{e} = \boldsymbol{D}\boldsymbol{d}, d_i^2 = \|\boldsymbol{x} - \boldsymbol{x}_i\|_2^2, d_i = w_i^2, i = 1, \dots, L,$$

where $\mathbf{D} = [-\mathbf{1}_{L-1}, \mathbf{I}_{(L-1)\times(L-1)}], \mathbf{r} = [r_{2,1}, ..., r_{L,1}]^T$, and $\mathbf{w} = [w_1, ..., w_L]^T$.

LCA-INCORPORATED LPNN

- The LPNN is not straightforwardly applicable since we do not premise the robust loss on any differentiability assumption.
- It is straightforward to settle the inapplicability of LPNN to the problem, in a manner similar to the construction of internal state dynamics when solving the unconstrained sparse approximation formulation using LCA.
- lacktriangle To be specific, letting J=L-1, z=e, $\delta=1$ and combining the use of both neural systems by substituting e held in the Lagrangian neurons with u, we have finally:
- $\frac{d\boldsymbol{x}}{dt} = -2\sum_{i=1}^{n} \left[\lambda_{L-1+i} + \rho \left(d_i^2 \|\boldsymbol{x} \boldsymbol{x}_i\|_2^2 \right) \right] (\boldsymbol{x}_i \boldsymbol{x}),$
- $rac{dd_i}{dt} = \left[oldsymbol{D}^T \cdot \left[\lambda_1, ..., \lambda_{L-1}
 ight]_i^T 2\lambda_{L-1+i} d_i +
 ho \left\{ \left[oldsymbol{D}^T \left(oldsymbol{r} oldsymbol{e} oldsymbol{D} oldsymbol{d}
 ight]_i 2 \left(d_i^2 \left\| oldsymbol{x} oldsymbol{x}_i
 ight\|_2^2
 ight) d_i \left(d_i w_i^2
 ight)
 ight\} \lambda_{2L-1+i},$
- $\frac{d\boldsymbol{u}}{dt} = -\boldsymbol{u} + \boldsymbol{e} + \left[\lambda_1, ..., \lambda_{L-1}\right]^T + \rho \left(\boldsymbol{r} \boldsymbol{e} \boldsymbol{D}\boldsymbol{d}\right),$
- $e_{i-1} = \mathcal{T}_{(\kappa,\tau,\delta)}(u_{i-1}), \quad i = 2, ..., L,$
- $\frac{d\lambda_{i-1}}{dt} = r_{i,1} e_{i,1} d_i + d_1, \quad i = 2, ..., L,$ $\frac{d\lambda_{L-1+i}}{dt} = d_i^2 - \|x - x_i\|_2^2, \quad i = 1, ..., L,$ $\frac{d\lambda_{2L-1+i}}{dt} = d_i - w_i^2, \quad i = 1, ..., L.$
- $\frac{dw_i}{dt} = 2\lambda_{2L-1+i}w_i + 2\rho\left(d_i w_i^2\right)w_i, \quad i = 1, ..., L,$ Numerical complexity is $\mathcal{O}(N_{\text{LPNN}}L)$, where $N_{\rm LPNN}$ is the number of iterations.
 - Stability of LCA-incorporated LPNN remains an open issue for future research.

SIMULATION RESULTS

- The localization performance of the LPNN approach is evaluated using synthetic data. The robust loss is set as $\sum \psi_{(1,\tau,1)}(\cdot)$. State-of-the-art TDOA positioning methods with NLOS effects being countered, i.e., SDP-TOA [iv], SDP-Robust-R1 [v], and SDP-Robust-R2 [v] are implemented for comparison.
- lacktriangle The 1st configuration is deterministic, with L=8 sensors evenly placed on the perimeter of a 20 m \times 20 m square region and a single source fixed at $x = [2,3]^T$ m, whereas the 2nd randomly generates positions of the source and L=10 sensors from the same area in each of 500 Monte Carlo runs.
- \bullet n_i is assumed to be of constant variance σ^2 for all is, and the possibly abnormally large value of q_i is randomly generated, upper-bounded by ω_i .

EXPERIMENTAL RESULTS

- We also conduct tests using the real experimental data collected in a 45 m × 60 m area outdoors by a ranging system comprising five equal-height deployed Decawave DWM1000 modules, each of which is an IEEE 802.15.4-2011 UWB implementation, based on the Decawave DW1000 UWB transceiver integrated circuit.
- While four of the modules are utilized as sensors, the one left acts as the source to be located. 50 Monte Carlo trials are performed.
- The localization geometry is illustrated below. The true positions are measured by a total station set up at the origin, and $x_{\{1\}}^r$ and $x_{\{2\}}^r$ are two benchmarking points (BPs) for the source.

60 (a) 40 (b) 20		ıl statio	$[3.11,$ on / origon $m{x}^r_{\{2\}} = .87, 7.6$	gin	• sour = [12.49 13.32]	ce	$[1]^T \mathrm{m}$	sensor	
0 -	* 3	Ц °	,,,,,	<u> </u>		$\boldsymbol{L}_4 - [\cdot]$	51.40,	1.01 1.	11
-5	0	5	10	15	20	25	30	35	40
				x (m)				

Algorithm	RMS	E (m)	Average run-time (s)		
_	BP 1	BP 2	BP 1	BP 2	
LPNN $(\tau = 10^5)$	0.09	0.06	0.054	0.068	
LPNN $(\tau = 1)$	0.07	0.10	0.140	0.115	
SDP-TOA	0.10	0.07	0.788	0.777	
SDP-Robust-R1	0.17	0.21	0.717	0.720	
SDP-Robust-R2	0.51	0.61	1.020	0.945	