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1. Introduction and Motivation 
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1. Introduction and Motivation

outliers

➢ Data with outliers



4/20

➢Minimum error formulation of PCA

2. Background
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2. Background
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➢Two-dimensional Principle component analysis

2. Background

Jian Yang, David Zhang, Alejandro F Frangi, and Jing-yu Yang. Two-dimensional pca: a new approach 
to appearance-based face representation and recognition. IEEE transactions on pattern analysis and 
machine intelligence, 26(1):131–137, 2004.

Two dimensional approaches directly apply decomposition on 2D images. 
For example, 2DPCA uses all the 2D images to construct a covariance 
matrix    :
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➢Two-dimensional  singular vector decomposition

2. Background

Objective function: 
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Where                              and               . Define the row-row and 
column-column covariance matrices as:
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The 2DPCA is a special case of 2DSVD by setting  =L I
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3. Proposed Method

We developed a generalized kernel risk sensitive loss for robust 
2DSVD decomposition.

Definition: Generalized kernel risk sensitive loss (GKRSL)

• Based on the information potential, the GKRISL is defined as a generalized similarity
measure between two arbitrary random variables A and B
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3. Proposed Method

• It is a local criterion, compared with the global criterion, like mean
square error, the local criterion will be more accurate.

• Compared with the second order metric, the P-order metric offers
more flexible choice in controlling the representation error.

• The optimization of generalized kernel risk sensitive loss is easier
than that of L1-norm based methods.

• It has a clear theoretical foundation and it satisfies symmetric,
positive, triangle inequality and rotational invariant.

Advantages:
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3. Proposed Method

➢ The robust 2DSVD based on GKRSL

First, we solve the optimization on     by setting the derivative of  loss 
function with respect to     to zeros
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3. Proposed Method

➢ Optimization by Majorization Minimization

Majorization step: construct a convex upper bound surrogation 
function for the non-convex objective function.
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3. Proposed Method

➢ Optimization by Majorization Minimization

Minimization step: Minimize the surrogate function until convergence
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3. Proposed Method
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4. Experimental Results

➢ Experiment 1. Image Classification

Dataset

• MNIST dataset, 60000 for training and 10000 for testing,
• Randomly select {400,600,800} samples per digit for training.
• Randomly choose 5% of the training samples and weight them by a 

magnitude. 
• Choose all the testing image for testing.
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4. Experimental Results

➢ Experiment 1. Image Classification
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4. Experimental Results

➢ Experiment 1. Image Classification
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4. Experimental Results

➢ Experiment 2. Image Clustering
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4. Experimental Results

➢ Experiment 2. Image Clustering



19/20

5. Conclusion

Conclusion

• The proposed robust 2DSVD method is robust to outliers
• Can handle non-centered data and update data mean during optimization
• Preserve the rotational invariant of the original 2DSVD methods
• Easy to be extended to higher order tensor case
• Better performance on image classification and clustering
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