

Queensland, Australia

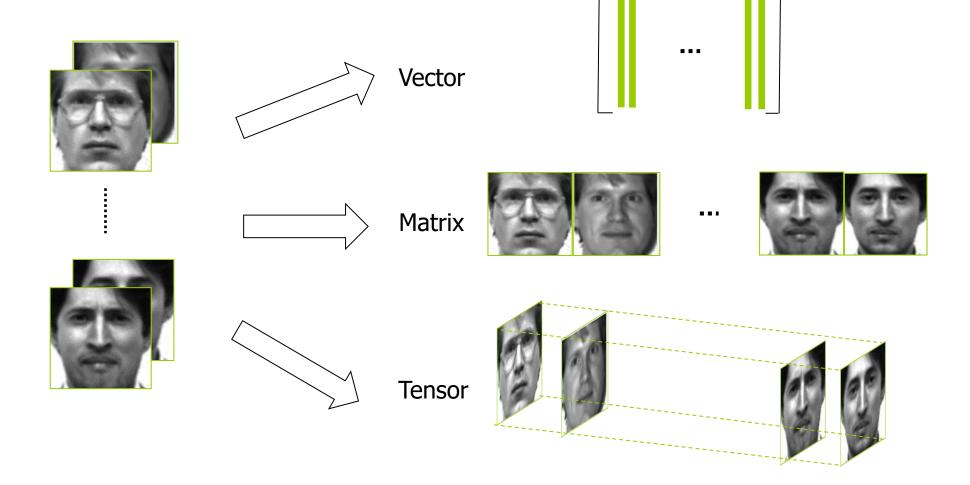
A Generalized Kernel Risk Sensitive Loss for Robust Two-dimensional Singular Value Decomposition

Miaohua Zhang, Yongsheng Gao, Jun Zhou

Institute for Integrated and Intelligent Systems, Griffith University, Australia.

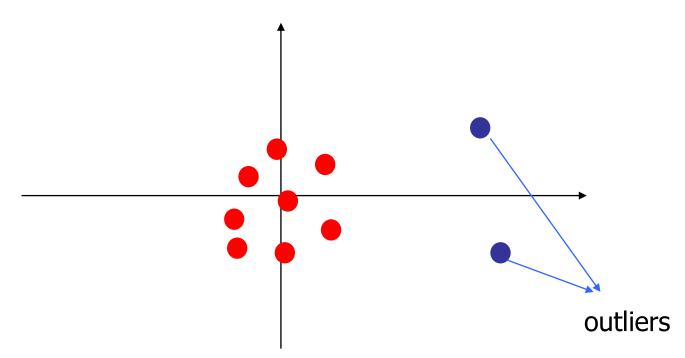
1. Introduction and Motivation

Representation of Data

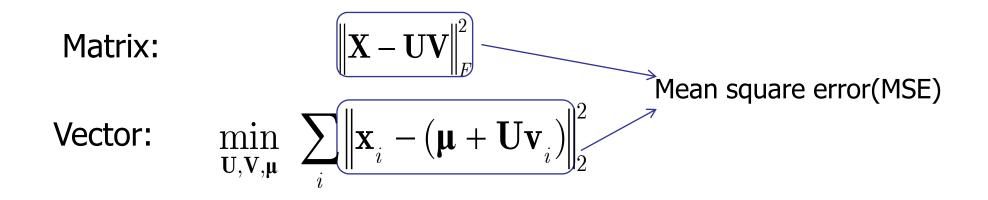


1. Introduction and Motivation

Data with outliers

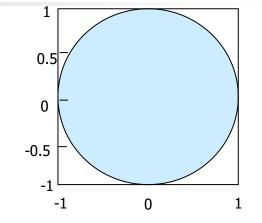


Minimum error formulation of PCA



 \succ L₁ norm based PCA

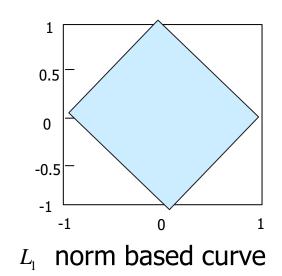
$$\left\| \mathbf{X} \right\|_{F} = \left(\sum_{i=1}^{n} \sum_{j=1}^{d} \mathbf{x}_{ji}^{2} \right)^{1/2} , \left\| \mathbf{X} \right\|_{1} = \sum_{i=1}^{n} \sum_{j=1}^{d} \left| \mathbf{x}_{ji} \right|$$



 L_2 norm based curve

 L_1 Norm PCA has the cost function

$$\min_{\mathbf{U},\mathbf{V}} \| \mathbf{X} - \mathbf{U}\mathbf{V} \|_{L_1} = \sum_{i=1}^n \| \mathbf{x}_i - \mathbf{U}\mathbf{v}_i \|_{L_1}$$



> Two-dimensional Principle component analysis

Two dimensional approaches directly apply decomposition on 2D images. For example, 2DPCA uses all the 2D images to construct a covariance matrix : C

$$\mathbf{C} = \sum_{i=1}^{N} (\mathbf{X}_{i} - \boldsymbol{\mu})^{T} (\mathbf{X}_{i} - \boldsymbol{\mu}) = \sum_{i=1}^{N} \mathbf{X}_{i}^{\boldsymbol{\mu}T} \mathbf{X}_{i}^{\boldsymbol{\mu}}$$

Where $\boldsymbol{\mu} = \frac{1}{N} \sum_{i=1}^{N} \mathbf{X}_{i}$

Jian Yang, David Zhang, Alejandro F Frangi, and Jing-yu Yang. Two-dimensional pca: a new approach to appearance-based face representation and recognition. IEEE transactions on pattern analysis and machine intelligence, 26(1):131–137, 2004.

> Two-dimensional singular vector decomposition

Objective function:

$$\min_{L,R,\{M_i\}} J(\mathbf{L},\{\mathbf{M}_i\},\mathbf{R}) = \sum_{i=1}^N \left\|\mathbf{X}_i^{\mu} - \mathbf{L}\mathbf{M}_i\mathbf{R}^T\right\|_F^2$$

Where $\mathbf{L} \in \mathbb{R}^{p \times k_1}$, $\mathbf{R} \in \mathbb{R}^{q \times k_2}$ and $\mathbf{M}_i \in \mathbb{R}^{k_1 \times k_2}$ Define the row-row and column-column covariance matrices as:

$$\mathbf{C}_1 = \sum_{i=1}^N \mathbf{X}_i^{\mu} \mathbf{R} \mathbf{R}^T \mathbf{X}_i^{\mu T} \quad \mathbf{C}_2 = \sum_{i=1}^N \mathbf{X}_i^{\mu T} \mathbf{L} \mathbf{L}^T \mathbf{X}_i^{\mu}$$

The 2DPCA is a special case of 2DSVD by setting L = I

3. Proposed Method

We developed a generalized kernel risk sensitive loss for robust 2DSVD decomposition.

Definition: Generalized kernel risk sensitive loss (GKRSL)

• Based on the information potential, the GKRISL is defined as a generalized similarity measure between two arbitrary random variables A and B

$$\begin{split} f_{\text{GKRSL}}(A - B) &= \frac{1}{\lambda} \mathbf{E} \left[\exp\left(\lambda \eta \|\kappa(A) - \kappa(B)\|_{H}^{p} \right) \right] \\ &= \frac{1}{\lambda} \mathbf{E} \left[\exp\left(\lambda \eta \left(\|\kappa(A) - \kappa(B)\|_{H}^{2} \right)^{\frac{p}{2}} \right) \right] \\ &= \frac{1}{\lambda} \mathbf{E} \left[\exp(\lambda (1 - g_{\sigma}(A - B))^{\frac{p}{2}}) \right], \end{split}$$

Advantages:

- It is a local criterion, compared with the global criterion, like mean square error, the local criterion will be more accurate.
- Compared with the second order metric, the P-order metric offers more flexible choice in controlling the representation error.
- The optimization of generalized kernel risk sensitive loss is easier than that of L1-norm based methods.
- It has a clear theoretical foundation and it satisfies symmetric, positive, triangle inequality and rotational invariant.

3. Proposed Method

The robust 2DSVD based on GKRSL

$$\min_{L,R,\{M_i\},\bar{X}} f_{\text{GKRSL}}(E_i) = \frac{1}{N\lambda} \sum_{i=1}^{N} \exp(\lambda(1 - \exp(-\frac{E_i^2}{2\sigma^2}))^{\frac{p}{2}})$$

s.t. $L^T L = I, \ R^T R = I, \ E_i = \sqrt{\|\hat{X}_i - LM_i R^T\|_F^2}.$

First, we solve the optimization on \mathbf{M}_i by setting the derivative of loss function with respect to \mathbf{M}_i to zeros

$$\min_{L,R,\bar{X}} f_{\text{GKRSL}}(E_i) = \frac{1}{N\lambda} \sum_{i=1}^{N} \exp(\lambda(1 - \exp(-\frac{E_i^2}{2\sigma^2}))^{\frac{p}{2}})$$

s.t. $L^T L = I, R^T R = I, E_i = \sqrt{\|\hat{X}_i - LL^T \hat{X}_i RR^T\|_F^2}.$

> Optimization by Majorization Minimization

Majorization step: construct a convex upper bound surrogation function for the non-convex objective function.

$$f_{\text{GKRSL}}(E_i) \leq f_{\text{GKRSL}}(E_{i,t}) + f'(E_{i,t})(E_i - E_{i,t}) + c$$

= $f_{\text{GKRSL}}(E_i|E_{i,t}),$

 $\min f_{\text{GKRSL}}(E) \le f'_{\text{GKRSL}}(E_t)E.$

> Optimization by Majorization Minimization

Minimization step: Minimize the surrogate function until convergence

 $\begin{aligned} & \underset{L,R,\bar{X}}{\operatorname{argmin}} \quad f_{\mathrm{GKRSL}}(E|E_t) \\ & \text{s.t.} \quad L^T L = I, \quad R^T R = I, \\ E_i = \sqrt{\|\hat{X}_i - LL^T \hat{X}_i RR^T\|_F^2}. \\ & \mathcal{L}(\hat{L}, \hat{R}, \hat{\bar{X}}) = f_{\mathrm{GKRSL}}(E|E_t) \\ & + \operatorname{Tr}(\Omega_1(L^T L - I)) + \operatorname{Tr}(\Omega_2(R^T R - I)), \end{aligned}$

3. Proposed Method

$$\begin{split} \frac{\partial \mathcal{L}}{\partial \bar{X}} &= \frac{\partial \sum_{i=1}^{N} W_i \sqrt{\|\hat{X}_i - LL^T \hat{X}_i RR^T\|_F^2}}{\partial \bar{X}} = 0\\ \hat{X} &= \sum_{i=1}^{N} \frac{\frac{1}{2} W_i X_i}{\sqrt{\mathrm{Tr}(\hat{X}_i^T \hat{X}_i - \hat{X}_i^T LL^T \hat{X}_i RR^T)}} / \sum_{i=1}^{N} W_i. \end{split}$$

$$\begin{split} \frac{\partial \mathcal{L}}{\partial L} &= -FL + \Omega_1 L = 0, \\ F &= \frac{W_i \hat{X}_i RR^T \hat{X}_i^T}{2\sqrt{\mathrm{Tr}(\hat{X}_i^T \hat{X}_i - \hat{X}_i^T LL^T \hat{X}_i RR^T)}} \end{split}$$

$$\begin{split} G &= \frac{W_i \hat{X}_i RR^T \hat{X}_i}{2\sqrt{\mathrm{Tr}(\hat{X}_i^T \hat{X}_i - \hat{X}_i^T LL^T \hat{X}_i RR^T)}} \end{split}$$

Experiment 1. Image Classification

Dataset

- MNIST dataset, 60000 for training and 10000 for testing,
- Randomly select {400,600,800} samples per digit for training.
- Randomly choose 5% of the training samples and weight them by a magnitude.
- Choose all the testing image for testing.

Experiment 1. Image Classification

Table 1. The recognition accuracy of all the algorithms on the MNIST dataset with 5% outliers: Average recognition accuracy (AC) \pm standard derivation.

Methods	Images per digit $\times \sharp$ of digits				
	400×10	600×10	800×10		
2DPCA	0.6264 ± 0.0206	0.6543 ± 0.0171	0.6788 ± 0.0136		
L_1 -2DPCA	0.6257 ± 0.0204	0.6539 ± 0.0171	0.6782 ± 0.0136		
F-2DPCA	0.6272 ± 0.0164	0.6490 ± 0.0119	0.6759 ± 0.0122		
2DSVD	0.6360 ± 0.0160	0.6565 ± 0.0121	0.6840 ± 0.0113		
R_1 -2DSVD	0.6358 ± 0.0162	0.6562 ± 0.0121	0.6562 ± 0.0121		
N-2DNPP	0.6405 ± 0.0130	0.6548 ± 0.0160	0.6689 ± 0.0131		
S-2DNPP	0.6283 ± 0.0213	0.6566 ± 0.0154	0.6799 ± 0.0136		
Proposed	0.8462 ± 0.0041	0.8458 ± 0.0014	0.8639 ± 0.0020		

Experiment 1. Image Classification

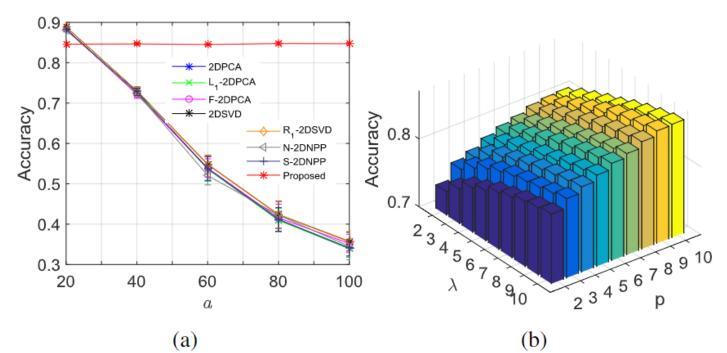


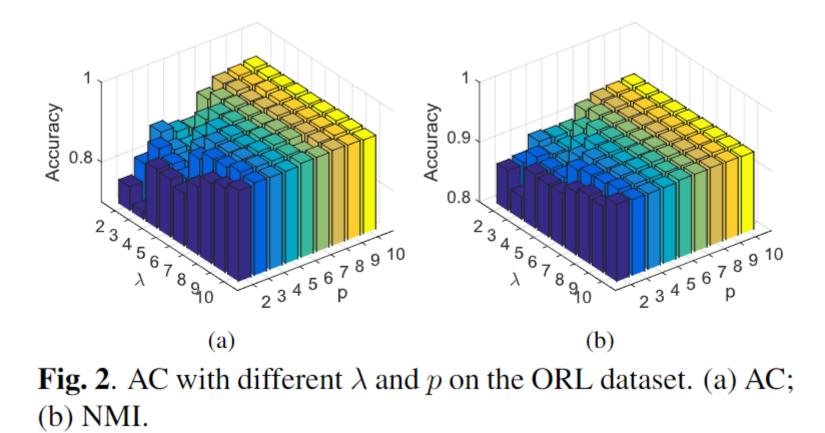
Fig. 1. AC on the MNIST Handwritten Digit Dataset. (a) AC of all the algorithms with changing magnitude of outliers; (b) AC of the proposed algorithm with different λ and p.

Experiment 2. Image Clustering

Table 2. Clustering results of subspaces learned from different algorithms on the first 100 faces of the ORL dataset: Average Clustering Accuracy (AC) \pm Standard Deviation and Average normalized mutual information (NMI) \pm Standard Deviation.

Methods and evaluation metrics		Number of principal components				
		m = 30	m = 50	m = 70	m = 90	
2DPCA	AC	0.5991 ± 0.0442	0.7535 ± 0.0153	0.8143 ± 0.0190	0.7507 ± 0.0070	
	NMI	0.7619 ± 0.0268	0.8692 ± 0.0042	0.8860 ± 0.0052	0.8684 ± 0.0019	
L_1 -2DPCA	AC	0.6981 ± 0.0176	$0.8199 \pm 1.2e-15$	0.8003 ± 0.0315	0.7500 ± 0	
	NMI	0.8221 ± 0.0112	$0.8875 \pm 1.4e-15$	0.8821 ± 0.0087	$0.8682 \pm 4.4e-16$	
F-2DPCA	AC	$0.7000 \pm 1.3e-15$	$0.8199 \pm 1.2e-15$	0.7528 ± 0.0137	0.7500 ± 0	
	NMI	$0.8200 \pm 7.8e16$	$0.8875 \pm 1.4e-15$	0.8690 ± 0.0038	$0.8682 \pm 4.4e-16$	
2DSVD	AC	0.7012 ± 0.0836	0.7571 ± 0.0219	0.8108 ± 0.0236	0.7528 ± 0.0137	
	NMI	0.8197 ± 0.0417	0.8615 ± 0.0136	0.8850 ± 0.0065	0.8690 ± 0.0038	
R_1 -2DSVD	AC	0.6876 ± 0.0781	0.7615 ± 0.0165	0.8052 ± 0.0286	0.7507 ± 0.0070	
	NMI	0.8128 ± 0.0406	0.8640 ± 0.0095	0.8835 ± 0.0079	0.8684 ± 0.0019	
N-2DNPP	AC	0.7975 ± 0.0925	0.7822 ± 0.0351	0.7948 ± 0.0338	0.7528 ± 0.0138	
	NMI	0.8753 ± 0.0295	0.8772 ± 0.0097	0.8806 ± 0.0093	0.8691 ± 0.0038	
S-2DNPP	AC	0.7411 ± 0.0250	0.7424 ± 0.0129	0.8163 ± 0.0177	0.7491 ± 0.0090	
	NMI	0.8223 ± 0.0148	0.8457 ± 0.0070	0.8859 ± 0.0082	0.8666 ± 0.0065	
Proposed	AC	0.9160 ± 0.0479	0.9377 ± 0.0363	$\textbf{0.8461} \pm \textbf{0.0721}$	0.7623 ± 0.0258	
	NMI	$\textbf{0.9158} \pm \textbf{0.0241}$	$\textbf{0.9292} \pm \textbf{0.0191}$	$\textbf{0.8902} \pm \textbf{0.0332}$	$\textbf{0.8704} \pm \textbf{0.0078}$	

Experiment 2. Image Clustering



5. Conclusion

Conclusion

- The proposed robust 2DSVD method is robust to outliers
- Can handle non-centered data and update data mean during optimization
- Preserve the rotational invariant of the original 2DSVD methods
- Easy to be extended to higher order tensor case
- Better performance on image classification and clustering

The end of presentation Thank you

Email: lena.zhang@griffith.edu.au