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Domain Mismatch
• Domain mismatch occurs when speech is collected from different acoustic 

environments.
• For example, there is a domain mismatch between near-field microphone 

speech and far-field microphone speech due to the difference in microphone 
characteristics.

• This mismatch can make a speaker verification system trained on near-field 
microphone speech perform poorly on far-field microphone speech.

• Collecting more data to retrain the system is time-consuming and 
computationally-expensive. 
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Domain Adaptation

Source: M. Wang, & W. Deng. Deep visual domain adaptation: A survey. Neurocomputing, 312, 2018, pages 135-
153.
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Fig. 3. Different learning processes between (a) traditional machine learning, (b) one-step domain adaptation and (c) multi-step domain adaptation [83].

TABLE I
DIFFERENT DEEP APPROACHES TO ONE-STEP DA

One-step DA
Approaches Brief Description Subsettings

Discrepancy-based fine-tuning the deep network with labeled or
unlabeled target data to diminish the domain shift

class criterion [118], [86], [79], [98]
[53], [45], [75], [139], [130], [29], [118], [28]

statistic criterion [74], [130], [73]
[75], [120], [32], [109], [87], [144]

architecture criterion [69], [54], [68], [95], [128], [89]
geometric criterion [16]

Adversarial-based using domain discriminators to encourage domain
confusion through an adversarial objective

generative models [70], [4], [57]
non-generative models [119], [118], [26], [25], [117]

[85]
Reconstruction-

based
using the data reconstruction as an auxiliary task to

ensure feature invariance
encoder-decoder reconstruction [5], [33], [31], [144]

adversarial reconstruction [131], [143], [59]

TABLE II
DIFFERENT DEEP APPROACHES TO MULTI-STEP DA

Multi-step Approaches Brief Description
Hand-crafted users determine the intermediate domains based on experience [129]

Instance-based selecting certain parts of data from the auxiliary datasets to compose the intermediate
domains [114], [16]

Representation-based freeze weights of one network and use their intermediate representations as input
to the new network [96]

proven to be cost effective include adaptive batch normal-
ization (BN) [69], [54], [68], weak-related weight [95],
domain-guided dropout [128], and so forth.

• Geometric Criterion: bridges the source and target
domains according to their geometrical properties. This
criterion assumes that the relationship of geometric struc-
tures can reduce the domain shift [16].

The second case can be referred to as an adversarial-based
deep DA approach [26]. In this case, a domain discriminator
that classifies whether a data point is drawn from the source
or target domain is used to encourage domain confusion
through an adversarial objective to minimize the distance
between the empirical source and target mapping distributions.
Furthermore, the adversarial-based deep DA approach can
be categorized into two cases based on whether there are
generative models.

• Generative Models: combine the discriminative model
with a generative component in general based on gen-
erative adversarial networks (GANs). One of the typical
cases is to use source images, noise vectors or both to
generate simulated samples that are similar to the target
samples and preserve the annotation information of the
source domain [70], [4], [57].

• Non-Generative Models: rather than generating models
with input image distributions, the feature extractor learns
a discriminative representation using the labels in the
source domain and maps the target data to the same space
through a domain-confusion loss, thus resulting in the
domain-invariant representations [119], [118], [26], [25],
[117].

The third case can be referred to as a reconstruction-based
DA approach, which assumes that the data reconstruction of
the source or target samples can be helpful for improving the
performance of DA. The reconstructor can ensure both speci-
ficity of intra-domain representations and indistinguishability
of inter-domain representations.

• Encoder-Decoder Reconstruction: by using stacked au-
toencoders (SAEs), encoder-decoder reconstruction meth-
ods combine the encoder network for representation
learning with a decoder network for data reconstruction
[5], [33], [31], [144].

• Adversarial Reconstruction: the reconstruction error is
measured as the difference between the reconstructed and
original images within each image domain by a cyclic
mapping obtained via a GAN discriminator, such as dual
GAN [131], cycle GAN [143] and disco GAN [59].
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Domain Adaptation
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Objective: Incorporating 
domain adaptation directly 
into the training of the 
speaker embedding 
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InfoMax Domain Separation and Adaptation Network
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Subscripts 0, 1, and 2 correspond to the 
target, source, and augmented-source, 
respectively.

InfoMax Domain Separation and Adaptation Network
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InfoMax Domain Separation and Adaptation Network
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Orthogonality-based:

MI-based:

InfoMax Domain Separation and Adaptation Network



Mutual Information Neural Estimator
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Extract informative
features.

Consistency Effectiveness



Mutual Information Neural Estimator
• Mutual information neural estimator utilizes a deep neural network 

with parameters 𝜃𝜖Θ to find a lower bound of the mutual 
information: 
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joint distribution product of the marginal distributions

Source: M. I. Belghazi, A. Baratin, S. Rajeshwar, S. Ozair, Y. Bengio, D. Hjelm, and A. Courville, “Mutual 
information neural estimation,” in International Conference on Machine Learning, 2018, pp. 530–539. 



Mutual Information Neural Estimator
• Mutual information neural estimator utilizes a deep neural network 

with parameters 𝜃𝜖Θ to find a lower bound of the mutual 
information: 
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Source: R Devon Hjelm, Alex Fedorov, Samuel Lavoie-Marchildon, Karan Grewal, Phil Bachman, Adam Trischler, and Yoshua
Bengio, “Learning deep representations by mutual information estimation and maximization,” arXiv preprint arXiv:1808.06670, 
2018. 
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Frame-based Mutual Information Neural Estimation
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Frame-based Mutual Information Neural Estimation
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Self-supervised Learning
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Positive pair: 𝑥!#(frame 0-200), 𝑥!#(frame 200-400)
Negative pair: 𝑥!# (frame 0-200), 𝑥'

(/*+,

Objective: To minimize the distance 
between an anchor and a positive sample 
and maximize the distance between an 
anchor and a negative sample

Positive pair: segments from the same
utterance

Negative pair: segments from different
utterances (find the closest segment for 
each anchor within a batch)



Experiments
• Source domain data 𝓓𝒔 :

• VoxCeleb1 dev, VoxCeleb2 dev & test
• ~2.2M utterances spoken by 7,323 speakers

• Augmented source domain data 𝓓𝒂𝒖𝒈 : 
• by adding noise, babble, and music from MUSAN and reverberation from the RIR dataset 

to speech in 𝓓𝒔

• Target domain data (unlabeled) 𝓓𝒕 :
• VOiCES Challenge 2019 development set

• Evaluation set:
• VOiCES Challenge 2019 development and evaluation set
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Results
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[4]: J. Huang and T. Bocklet, “Intel far-field speaker recognition system for VOiCES challenge 2019,” in Proc. Interspeech, 2019, pp. 
2473–2477. 
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Conclusions

• InfoMax-DSAN can enforce the shared encoder to disentangle the 
domain-invariant features from the domain-specific properties, 
which can help to address domain mismatch.

• The frame-based MINE can effectively help extract informative
features.

• Self-supervised learning can help mitigate the label mismatch 
problem for domain adaptation.
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