

Disentangled Speaker Embedding for Robust Speaker Verification

Lu YI, Man-Wai MAK

Dept. of Electronic and Information Engineering, The Hong Kong Polytechnic University, Hong Kong SAR of China

ICASSP'22

Contents

- 1. Domain Mismatch and Domain Adaptation
- 2. InfoMax Domain Separation and Adaptation Network (InfoMax-DSAN)
- 3. Frame-based Mutual Information Neural Estimator (MINE)
- 4. Self-supervised Learning
- 5. Experiments and Results
- 6. Conclusions

Domain Mismatch

- Domain mismatch occurs when speech is collected from different acoustic environments.
- For example, there is a domain mismatch between near-field microphone speech and far-field microphone speech due to the difference in microphone characteristics.
- This mismatch can make a speaker verification system trained on near-field microphone speech perform poorly on far-field microphone speech.
- Collecting more data to retrain the system is time-consuming and computationally-expensive.

Domain Adaptation

Source: M. Wang, & W. Deng. Deep visual domain adaptation: A survey. *Neurocomputing*, *312*, 2018, pages 135-153.

4

Domain Adaptation

Mutual Information Neural Estimator

Mutual Information Neural Estimator

• Mutual information neural estimator utilizes a deep neural network with parameters $\theta \in \Theta$ to find a lower bound of the mutual information:

$$I(X, Z) = \sup_{\theta \in \Theta} \mathbb{E}_{\mathbb{P}_{XZ}} [T_{\theta}] - \log \left(\mathbb{E}_{\mathbb{P}_{X} \otimes \mathbb{P}_{Z}} \left[e^{T_{\theta}} \right] \right)$$

$$joint distribution \qquad \text{product of the marginal distributions}$$

$$I(X, Z) = D_{KL}(\mathbb{P}_{XZ} || \mathbb{P}_{X} \otimes \mathbb{P}_{Z})$$

Source: M. I. Belghazi, A. Baratin, S. Rajeshwar, S. Ozair, Y. Bengio, D. Hjelm, and A. Courville, "Mutual information neural estimation," in *International Conference on Machine Learning*, 2018, pp. 530–539.

Mutual Information Neural Estimator

• Mutual information neural estimator utilizes a deep neural network with parameters $\theta \in \Theta$ to find a lower bound of the mutual information:

$$I(X,Z) = D_{KL}(\mathbb{P}_{XZ} \| \mathbb{P}_X \otimes \mathbb{P}_Z)$$
Approximate

 $I^{\mathrm{JS}}_{\Theta}(X,Z) = \mathbb{E}_{\mathbb{P}_{XZ}}[-\operatorname{sp}(-T_{ heta})] - \mathbb{E}_{\mathbb{P}_X\otimes\mathbb{P}_Z}[\operatorname{sp}(T_{ heta})]$

Source: R Devon Hjelm, Alex Fedorov, Samuel Lavoie-Marchildon, Karan Grewal, Phil Bachman, Adam Trischler, and Yoshua Bengio, "Learning deep representations by mutual information estimation and maximization," *arXiv preprint arXiv:1808.06670*, 2018.

Frame-based Mutual Information Neural Estimation

Input: Filter Banks (or MFCCs)

Frame-based Mutual Information Neural Estimation

Input: Filter Banks (or MFCCs)

Self-supervised Learning

Objective: To minimize the distance between an anchor and a positive sample and maximize the distance between an anchor and a negative sample

Positive pair: segments from the same utterance

Negative pair: segments from different utterances (find the closest segment for each anchor within a batch)

Positive pair: x_i^t (frame 0-200), x_i^t (frame 200-400) **Negative pair**: x_i^t (frame 0-200), $x_j^{s/aug}$

Experiments

- Source domain data D^s :
 - VoxCeleb1 dev, VoxCeleb2 dev & test
 - ~2.2M utterances spoken by 7,323 speakers
- Augmented source domain data \mathcal{D}^{aug} :
 - by adding noise, babble, and music from MUSAN and reverberation from the RIR dataset to speech in D^s
- Target domain data (unlabeled) \mathcal{D}^t :
 - VOiCES Challenge 2019 development set
- Evaluation set:
 - VOiCES Challenge 2019 development and evaluation set

Pow	System	Source	Target	MINE	C	ח.	C	VOiCI	ES dev.	VOiCES eval.	
ROW	System	domain	domain		~triplet	$D_{\rm adt}$	<i>L</i> diff	EER(%)	minDCF	EER(%)	minDCF
1	TDNN [4]	\mathcal{D}^{s}	$\mathcal{D}^{\mathrm{aug}}$	×	×	\checkmark	×	3.18	-	7.15	-
2		$\{\mathcal{D}^s,\mathcal{D}^{\mathrm{aug}}\}$	×	×	×	×	×	2.35	0.2596	6.42	0.4398
3		$\{\mathcal{D}^s,\mathcal{D}^{\mathrm{aug}}\}$	\mathcal{D}^t	×	\checkmark	×	×	2.16	0.2627	6.32	0.4305
4	$\operatorname{TDNN}\left(G_{\mathrm{spk}} ight)$	$\{\mathcal{D}^s,\mathcal{D}^{\mathrm{aug}}\}$	×	\checkmark	×	×	×	2.29	0.2453	5.98	0.4351
5		$\{\mathcal{D}^s,\mathcal{D}^{\mathrm{aug}}\}$	\mathcal{D}^t	×	\checkmark	\checkmark	×	2.31	0.2645	6.29	0.4399
6		$\{\mathcal{D}^s,\mathcal{D}^{\mathrm{aug}}\}$	\mathcal{D}^t	\checkmark	\checkmark	\checkmark	×	2.54	0.2671	6.23	0.4379
7	InfoMor DCAN	\mathcal{D}^{s}	$\mathcal{D}^{\mathrm{aug}}$	\checkmark	×	\checkmark	MI	2.17	0.2418	5.93	0.4265
8	IIIIOWIAX–DSAN	\mathcal{D}^{s}	$\mathcal{D}^{\mathrm{aug}}$	\checkmark	×	\checkmark	ort	2.33	0.2577	5.98	0.4131
9	$(\mathcal{O} \circ \mathcal{O})$	$\{\mathcal{D}^s,\mathcal{D}^{\mathrm{aug}}\}$	\mathcal{D}^t	\checkmark	×	\checkmark	MI	3.29	0.3278	6.75	0.4614
10 (G _d	$(G_{\rm dom} \& G_{\rm spk})$	$\{\mathcal{D}^s,\mathcal{D}^{\mathrm{aug}}\}$	\mathcal{D}^t	×	\checkmark	\checkmark	MI	2.31	0.2490	6.02	0.4161
11		$\{\mathcal{D}^s,\mathcal{D}^{\mathrm{aug}}\}$	\mathcal{D}^t	\checkmark	\checkmark	\checkmark	MI	2.06	0.2375	5.69	0.4127

[4]: J. Huang and T. Bocklet, "Intel far-field speaker recognition system for VOiCES challenge 2019," in *Proc. Interspeech*, 2019, pp. 2473–2477.

17

Pow	System	Source	Target	MINE C		ם ו	C	VOiCI	ES dev.	VOiCES eval.	
ROW	System	domain	domain	WIINE	~triplet	$ u_{\rm adt} $	~diff	EER(%)	minDCF	EER(%)	minDCF
1	TDNN [4]	\mathcal{D}^{s}	$\mathcal{D}^{\mathrm{aug}}$	×	×	\checkmark	×	3.18	-	7.15	-
2		$\{\mathcal{D}^s,\mathcal{D}^{\mathrm{aug}}\}$	×	×	×	×	×	2.35	0.2596	6.42	0.4398
3		$\{\mathcal{D}^s,\mathcal{D}^{\mathrm{aug}}\}$	\mathcal{D}^t	×	\checkmark	×	×	2.16	0.2627	6.32	0.4305
4	TDNN ($G_{\rm spk}$)	$\{\mathcal{D}^s,\mathcal{D}^{\mathrm{aug}}\}$	×	\checkmark	×	×	×	2.29	0.2453	5.98	0.4351

 $\mathbf{x}^{s'} \in \{\mathcal{D}^s, \mathcal{D}^{ ext{aug}}\}$ $\mathbf{x}^t \in \mathcal{D}^t$

Row	System	Source	Target	MINE	C	ה ת	Curre	VOiCI	ES dev.	VOiCES eval.	
	System	domain	domain	WIINE	~triplet	${m D}_{ m adt}$	Ldiff	EER(%)	minDCF	EER(%)	minDCF
1	TDNN [4]	\mathcal{D}^{s}	$\mathcal{D}^{\mathrm{aug}}$	×	×	\checkmark	×	3.18	-	7.15	-
2		$\{\mathcal{D}^s,\mathcal{D}^{\mathrm{aug}}\}$	×	×	×	×	×	2.35	0.2596	6.42	0.4398
3		$\{\mathcal{D}^s,\mathcal{D}^{\mathrm{aug}}\}$	\mathcal{D}^t	×	\checkmark	×	×	2.16	0.2627	6.32	0.4305
4	$\text{TDNN}\left(G_{\text{spk}}\right)$	$\{\mathcal{D}^s,\mathcal{D}^{\mathrm{aug}}\}$	×	\checkmark	×	×	×	2.29	0.2453	5.98	0.4351
5		$\{\mathcal{D}^s,\mathcal{D}^{\mathrm{aug}}\}$	\mathcal{D}^t	×	\checkmark	\checkmark	×	2.31	0.2645	6.29	0.4399
6		$\{\mathcal{D}^s,\mathcal{D}^{\mathrm{aug}}\}$	\mathcal{D}^t	\checkmark	\checkmark	\checkmark	×	2.54	0.2671	6.23	0.4379

Row	System	Source	Target	MINE	C	D _{adt}	$\mathcal{L}_{ ext{diff}}$	VOiCI	ES dev.	VOiCES eval.	
	System	domain	domain	IVIIINE	~triplet	$\nu_{ m adt}$	Ldiff	EER(%)	minDCF	EER(%)	minDCF
1	TDNN [4]	\mathcal{D}^{s}	$\mathcal{D}^{\mathrm{aug}}$	×	×	\checkmark	×	3.18	-	7.15	-
2		$\{\mathcal{D}^s,\mathcal{D}^{\mathrm{aug}}\}$	×	×	×	×	×	2.35	0.2596	6.42	0.4398
6		$\{\mathcal{D}^s,\mathcal{D}^{ ext{aug}}\}$	$\mathcal{D}^{\dot{t}}$	\checkmark	\checkmark	\checkmark	×	2.54	0.2671	6.23	0.4379
7	InfoMor DSAN	\mathcal{D}^{s}	$\mathcal{D}^{\mathrm{aug}}$	\checkmark	×	\checkmark	MI	2.17	0.2418	5.93	0.4265
8	IIIIOWIAX-DSAIN	\mathcal{D}^{s}	$\mathcal{D}^{\mathrm{aug}}$	\checkmark	×	\checkmark	ort	2.33	0.2577	5.98	0.4131

Row	System	Source	Target	MINE	C	D	Curre	VOiCI	ES dev.	VOiCES eval.	
	System	domain	domain	WILLNE	Ltriplet	D_{adt}	Ldiff	EER(%)	minDCF	EER(%)	minDCF
1	TDNN [4]	\mathcal{D}^{s}	$\mathcal{D}^{\mathrm{aug}}$	×	×	\checkmark	×	3.18	-	7.15	-
2		$\{\mathcal{D}^s,\mathcal{D}^{\mathrm{aug}}\}$	×	×	×	×	×	2.35	0.2596	6.42	0.4398
9	(C, P, C)	$\{\mathcal{D}^s,\mathcal{D}^{\mathrm{aug}}\}$	\mathcal{D}^t	\checkmark	×	\checkmark	MI	3.29	0.3278	6.75	0.4614
10	10 $(G_{\text{dom}} \& G_{\text{spk}})$	$\{\mathcal{D}^s,\mathcal{D}^{ ext{aug}}\}$	\mathcal{D}^t	×	\checkmark	\checkmark	MI	2.31	0.2490	6.02	0.4161
11		$\{\mathcal{D}^s,\mathcal{D}^{\mathrm{aug}}\}$	\mathcal{D}^t	\checkmark	\checkmark	\checkmark	MI	2.06	0.2375	5.69	0.4127

VOiCES eval.

Row	System	Source	Target	MINE	Letwinlat	Dadt	Laiff	0.46								-
100	bystem	domain	domain		- uipiet	aut	un	0.46 -								
1	TDNN [4]	\mathcal{D}^{s}	$\mathcal{D}^{\mathrm{aug}}$	×	×	\checkmark	×									
2		$\{\mathcal{D}^s,\mathcal{D}^{\mathrm{aug}}\}$	×	×	×	×	×	0.45 -								
3		$\{\mathcal{D}^s,\mathcal{D}^{\mathrm{aug}}\}$	\mathcal{D}^t	×	\checkmark	×	×									
4	$\operatorname{TDNN}\left(G_{\mathrm{spk}} ight)$	$\{\mathcal{D}^s,\mathcal{D}^{\mathrm{aug}}\}$	×	\checkmark	×	×	×	齿 0 4 4 -					- 5	2		
5	_	$\{\mathcal{D}^s,\mathcal{D}^{\mathrm{aug}}\}$	\mathcal{D}^t	×	\checkmark	\checkmark	×	DDu DDu			4		•	-		
6		$\{\mathcal{D}^s,\mathcal{D}^{\mathrm{aug}}\}$	\mathcal{D}^t	\checkmark	\checkmark	\checkmark	×	ш					3			
7	InfoMor DCAN	\mathcal{D}^{s}	$\mathcal{D}^{\mathrm{aug}}$	\checkmark	×	\checkmark	MI	0.43 -			7					
8	Informax–DSAN	\mathcal{D}^{s}	$\mathcal{D}^{\mathrm{aug}}$	\checkmark	×	\checkmark	ort									
9		$\{\mathcal{D}^s,\mathcal{D}^{\mathrm{aug}}\}$	\mathcal{D}^t	\checkmark	×	\checkmark	MI	0.42 -		_						
10	$(G_{\rm dom}\&G_{\rm spk})$	$\{\mathcal{D}^s,\mathcal{D}^{\mathrm{aug}}\}$	\mathcal{D}^t	×	\checkmark	\checkmark	MI		11		 10					
11		$\{\mathcal{D}^s,\mathcal{D}^{\mathrm{aug}}\}$	\mathcal{D}^t	\checkmark	\checkmark	\checkmark	MI		● L T	_	•					
				1						5.8	6.0	6.	2	6.4	6.6	6.8
												EEF	२ (%)			

Conclusions

- InfoMax-DSAN can enforce the shared encoder to disentangle the domain-invariant features from the domain-specific properties, which can help to **address domain mismatch**.
- The frame-based MINE can effectively help **extract informative** features.
- Self-supervised learning can help **mitigate the label mismatch** problem for domain adaptation.