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Abstract
• KaraSinger is proposed for a task named score-free singing voice

synthesis (SVS), in which the prosody and melody are spontaneously
decided by machine.

• Why?
1. SVS is the task of computationally generating singing voices

from music scores and lyrics. For ordinary users, composing a
reasonable melody is much harder than writing lyrics.

2. Here, we explore the realm of score-free SVS (or, text-to-music),
where a model learns the prosody and melody of music implicitly
from data. At inference time, the model sings without the
guidance of human input other than lyrics.

• A VQ-VAE is first trained to compress singing voices into a discrete
space, which is then modeled by an autoregressive Transformer
conditioned on lyrics.

Method

Conclusion
• We have introduced in this paper KaraSinger, an SVS
model based on a hierarchical VQ-VAE over Mel-
spectrograms and a lyrics-conditioned LM to achieve
score-free SVS, which can generate novel singing
audio given lyrics but no score input.

• This opens up a new direction for SVS, where music
creators can get inspirations from the synthesized
singing, and common users can experience the
creativity of AI.

• Examples of audio samples can be found on at the
following demo page:
https://jerrygood0703.github.io/KaraSinger

• Hierarchical VQ-VAE over Mel-spectrograms
1. Work on Mel-spectrograms to reduce computational time.
2. The objective function is a combination of reconstruction loss,

commitment loss and an additional CTC loss, which is crucial
for the system to work.

Figure 1. Schematic diagram of the VQ-VAE part of our model. The ‘G3
Block’ comprises 1-D convolutions, group-normalization, and bi-
directional GRUs.
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• Language Model: GRU & Transformer
1. Modeling the compressed discrete latent codes via multi-level autoregressive

Transformer.
2. For the top-level codes, we employ a seq2seq model to account for the input

lyrics. As shown in the left and middle parts of Fig. 2, the encoder-decoder is
trained to map a sequence of phonemes to a sequence of top-level codes. The
location-sensitive attention is used to encourage a monotonic alignment
between the two sequences.

3. For the middle- and bottom-level codes, we combine them into a single
sequence by “interleaving” and use a single Transformer to jointly model
them, as shown in the rightmost part of Fig. 2. We propose this setting because
the output Mel-spectrogram is connected to each level of the VQ decoder via
residual connections, and accordingly codes from both levels affect each other
bilaterally. In this way, the generation of the middle-level codes is conditioned
on the whole sequence of the top-level codes.

4. Linear Transformer is adopted to model the mixed sequence, for its
effectiveness against autoregressive prediction on long sequences.

5. The tick embedding, tick ∈ {t1, t2, ..., t6}, where t is a learnable vector, is
repeated and added to the mixed sequence by the order of (t1, t2, ..., t6, t1, ...), to
signal the current position in the order of (M, M, B, B, B, B).

Figure 2. The LM part of our model that models the three layers of VQ codes (T: top, M:
middle, B: bottom). The combination of the lyrics encoder and the top-level decoder
follows the same design as the acoustic model in Tacotron2, except that the decoder
predicts discrete tokens instead of Mel-spectrograms. The rightmost decoder consists of
an upsampler and a linear Transformer. Finally, the decoded tokens are rearranged and
combined with the top-level tokens to be taken as input for the VQ-VAE decoder shown
in Fig. 1.

Experiments and results
• Dataset: We purchased 550 songs from an English

karaoke website to build a multi-singer, pop genre
dataset. We run NUS AutoLyricsAlign on the vocals
to obtain sentence-level alignments of the lyrics.
Songs are split into segments between 5 to 15 seconds.
The final dataset consists of 10,589 short segments,
amounting to roughly 20 hours worth of data,
sampled at 44.1 kHz. MelGAN is used for vocoder.

• Experiments:
1. noCTC is the case without the CTC loss during

the VQ-VAE training. 3-level is the case where
the CTC loss is used, but the middle- and bottom-
level codes are separately predicted, like in
Jukebox.

2. Subjective listening test: participants are asked
to rate the samples considering the following
three aspects, intelligibility, musicality, and
overall quality, all on a 5-point Likert scale.

https://jerrygood0703.github.io/KaraSinger

