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Research Motivations

⋄ Next 5G and 6G are pushing towards
millimeter-wave and THz frequencies;

⋄ The use of such high frequencies al-
lows to pack a large number of anten-
nas into a small area;

⋄ The adoption of electrically large an-
tenna arrays is such that the TX can
be located in the near-field radiating
(Fresnel) region of the RX (and not
in far-field), even for large TX-RX dis-
tances.
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Research Motivations – Curvature-of-Arrival (COA)

⋄ Curvature of arrival of the wavefront impinging on a large array when the source is
in near–field in p1.

⋄ When instead the source is in far–field in p2, the wavefront can be approximated
as planar.
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Research Motivations – COA for Source Tracking

⋄ Source tracking with antenna arrays usually considers the joint estimate of
angle-of-arrival (AOA) and time-of-arrival (TOA);

⋄ Unfortunately, such an estimate requires a fine synchronization between the

transmitter and receiver;

◮ Traditional Solutions: Time difference-of-arrival (TDOA) or two-way ranging
(TWR) approaches → need of an exchange of messages between nodes;

⋄ In near-field it is possible to infer the source position directly from the
curvature-of-arrival (COA) of the impinging spherical wavefront;

⋄ Advantages of near-field localization:

◮ only a single antenna array is sufficient to infer the user’s position;
◮ no time or phase synchronization is required between the user and the

anchor.
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State–Space Model - System Geometry

⋄ The goal of the tracking problem is to estimate the state of a target, that is

sk =
[

p
T
k , v

T
k

]T

given the history of measurements up to time instant k.

⋄ The array antenna coordinates are indicated with qn = [xn, yn, zn]
T,

n ∈ N = {0, . . . , N − 1}.
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State–Space Model - Signal Model

⋄ The received signal at the nth antenna of the array is

rn (t) = an,k cos (2π fp t− ϑn,k) + νn,k (t) ,

→֒ an,k ,
Aλ

4π dn,k
: signal amplitude with λ being the signal wavelength, and

dn,k = ‖pk − qn‖2 is the target-antenna distance;

→֒ ϑn,k , 2π fp

(

dn,k

c
+ t0

)

: signal phase with t0 being a clock offset;

→֒ The phase-difference is ∆ϑn,k ,
2π

λ
∆dn,k, with ∆dn,k , dn,k − dk;

→֒ νn,k (t) is the signal noise modeled as AWGN with double-sided power
spectral density N0/2.
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State–Space Model

⋄ The sequential state estimation problem (tracking) can be formulated starting
from a discrete-time state-space representation given by

sk = s
−
k +wk = Ak sk−1 +wk,

zk = h (pk) + ηk,

→֒ A: Transition matrix; wk ∼ N (wk;0,Q) is the zero-mean noise process
where Q is the transition noise covariance matrix;

→֒ The expected observation at the nth antenna of the ℓth array is

h (pk) = ∆ϑn,k mod 2π,

→֒ The observation noise process is modeled as ηk ∼ N (ηk;0,Rk) where Rk

is a diagonal matrix whose generic element is given by var (∆ϑn,k).
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State–Space Model - Near-Field Observation Model

⋄ The curvature of the impinging wave is encapsulated in the measurement model as

h (pk) ∝ ∆dn,k (qn,pk) = dk
[

√

fn,k − 1
]

,

fn,k , fn,k (qn,pk) = 1 +

(

dn0

dk

)2

− 2
dn0

dk
gn,k,

→֒ Definitions. Inter-antenna distances: dn0 = ‖qn − q0‖2, Target-array
distance: dk = ‖q0 − pk‖2; Angular term:
gn,k = sin (θn0) sin (θk) cos (φn0 − φk) + cos (θn0) cos (θk);

→֒ Near–field Model.
dn0

dk
≫ 1: near-field model → fn,k ≫ 1 curvature of the

impinging wavefront with ranging and bearing information.
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Posterior CRLB - PCRB

⋄ Derivation of the P-CRLB to assess the ultimate performance of the
COA–based tracking in the near– and far–field regions;

The FIM of sk can be recursively computed as [Tichavsky, Muravchik, Nehorai, 1998]

Jk = D
22
k−1 −D

21
k−1

(

Jk−1 +D
11
k−1

)−1
D

12
k−1 ,

where D
11
k−1 = A

T
Q

−1
A, D12

k−1 = D
21
k−1 = −A

T
Q

−1, D22
k−1 = Q

−1 + J
D
k where J

D
k is

the expectation of the Hessian matrix, i.e.,

J
D
k = E

sk|sk−1

{

E
zk|sk

{

−∆sk
sk

ln p (zk|sk)
}}

= E
sk|sk−1

{

J̃
D
k

}

,

with J̃
D
k being the non-Bayesian data FIM.

⋄ Analysis of the FIMs on ranging and bearing information and their
asymptotic behaviors for three different array geometries.
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Posterior CRLB - PCRB

⋄ Derivation of the P-CRLB to assess the ultimate performance of the
COA–based tracking in the near– and far–field regions;

⋄ Analysis of the FIMs on ranging and bearing information and their
asymptotic behaviors for three different array geometries.

FIMs for UCA and Source on CPL

The FIMs for a UCA on the Y Z-plane and a target on the X-axis are

J̃D (d) =
4N π2

λ2 σ2
η

·
2 + D2

4 d2
− 2

√

1 + D2

4 d2

1 + D2

4 d2

,

J̃D (θ) = J̃D (φ) =
N π2

2λ2σ2
η

D2

1 + D2

4 d2

.
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Posterior CRLB - PCRB

⋄ Derivation of the P-CRLB to assess the ultimate performance of the
COA–based tracking in the near– and far–field regions;

⋄ Analysis of the FIMs on ranging and bearing information and their
asymptotic behaviors for three different array geometries.

FIMs for UCA and Source on CPL and in Far–Field

For dk ≫ dF (far–field region), we get

J̃D (d) = 0,

J̃D (θ) = J̃D (φ) =
D2 N π2

2λ2σ2
η

.
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Posterior CRLB - Results
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Tracking Algorithms

⋄ We tested different tracking algorithms:

◮ Extended Kalman Filter: for non-linear Gaussian state-space models

→֒ It requires the linearization of the observation model:

{Hk}n = ∇sk
hn (pk) =

2π

λ
∇sk

∆dn,k (pk),

◮ Particle Filter: for arbitrary distribution functions described by a set of
particles and weights {sm,k, wm,k}

M
m=1

→֒ It requires the design of the importance sampling (IS) function:

⊗ Prior IS;
� Likelihood IS;
⋆ Linearised optimal IS.

Anna Guerra COA for Tracking IEEE ICASSP, 2022 10 / 18



Tracking Algorithms

⋄ We tested different tracking algorithms:

◮ Extended Kalman Filter: for non-linear Gaussian state-space models

→֒ It requires the linearization of the observation model:

{Hk}n = ∇sk
hn (pk) =

2π

λ
∇sk

∆dn,k (pk),

◮ Particle Filter: for arbitrary distribution functions described by a set of
particles and weights {sm,k, wm,k}

M
m=1

→֒ It requires the design of the importance sampling (IS) function:

⊗ Prior IS;
� Likelihood IS;
⋆ Linearised optimal IS.

Anna Guerra COA for Tracking IEEE ICASSP, 2022 10 / 18



Tracking Algorithms - IS Design

⊗ PF - Prior IS: Particles generation/propagation and weights are implemented as

sm,k ∼ p (sm,k|sm,k−1) = N (sm,k;Asm,k−1,Q) ,

wm,k = wm,k−1 p (zk|sm,k) .

, PFs work surprisingly well in most settings + low-complexity
/ Particles are propagated without considering the newest measurements zk.

� PF - Likelihood IS

⋆ PF - Linearised Optimal IS
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Tracking Algorithms - IS Design

⊗ PF - Prior IS

� PF - Likelihood IS: Particles and weights are generated as

sm,k ∼ N (sm,k; ŝML,k,PML,k) ,

wm,k = wm,k−1
p (zk|sm,k) p (sm,k|sm,k−1)

N (sm,k; ŝML,k,PML,k)
.

, Likelihood IS works well when the likelihood is more informative than the
prior.

/ It requires a maximum likelihood estimator.

⋆ PF - Linearised Optimal IS
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Tracking Algorithms - IS Design

⊗ PF - Prior IS

� PF - Likelihood IS

⋆ PF - Linearised Optimal IS: A possible choice for the optimal IS is to directly
sample from the posterior

π (sk|sm,k−1, zk) =
p (zk|sk) p (sk|sm,k−1)

∫

p (zk|sk) p (sk|sm,k−1) dsk
,

where an analytical form can be found if the observation function is linear and the
noises in the state and observation equations are Gaussians and additive.
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Simulation Results
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Simulation Results

⋄ Millimeter-wave antenna array (f = 28GHz). The number of particles was
M = 1000, and the total number of time instants was K = 20 ;

⋄ The array was planar, squared, with Ny = Nz ∈ {20, 30};

⋄ The initial state was s0 = (2.5, −9.1, 1.5, 0.01, 0.97, 0);

⋄ The actual transition of the source followed a linear model with

A =

[

I3 τ I3
03 I3

]

, Q =







τ3

3
Qa

τ2

2
Qa

τ2

2
Qa τ Qa






,

⋄ Qa = diag
(

σ2
a,x, σ

2
a,y, σ

2
a,z

)

, with σ2
a,x = σ2

a,y = γt 0.03
2 (

m2/step6
)

, σ2
a,z = 0. We

set γt = 1 and γt = 10, representing the possibility to work with transition
parameter match (TM0) or not (TM1).

⋄ The measurements noise standard deviation was set to ση = σ · (1 + γm) with
σ = 20◦ and where γm = 0 (i.e., ση = 20◦) and γm = 1 (i.e., ση = 40◦) denote a
measurement parameter match (MM0) or mismatch (MM1);

⋄ EKF/PF Init: m0 = N (s0,P0) and P0 = diag
(

0.52, 0.52, 0.012, 10−6, 10−2, 0
)
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Simulation Results
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(indicated as green markers) and in [1.51, 1.51, 1].
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Simulation Results
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⋄ RMSE (left) and Empirical CDF (right) vs. Localization error in meters for
different estimators and by considering a URA with N = 30× 30 antennas,
respectively. The measurement noise variance is set to ση = 20◦.
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Conclusions

⋄ We investigated a tracking problem where large arrays are able to elaborate the
phase profile of an impinging waveform

⋄ The spherical wavefront is exploited to estimate the state of a moving source

⋄ The positioning information is extrapolated from the COA of the wavefront when
the source is in the near-field region.

⋄ Numerical results show that robust tracking performance can be obtained when
exploiting only the COA encapsulated in the measured phases.
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