



### ORCA-PARTY: An Automtatic Killer Whale Sound Type Separation Toolkit Using Deep Learning

2022 IEEE International Conference on Acoustics, Speech and Signal Processing–ICASSP 2022, Singapore, May 22<sup>nd</sup>–27<sup>th</sup>, 2022

**Christian Bergler**<sup>1</sup>, Manuel Schmitt<sup>1</sup>, Andreas Maier<sup>1</sup>, Rachael Xi Cheng<sup>2</sup>, Volker Barth<sup>3</sup>, Elmar Nöth<sup>1</sup> <sup>1</sup>Friedrich-Alexander-Universität Erlangen-Nürnberg, Pattern Recognition Lab, Erlangen, Germany <sup>2</sup>Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany <sup>3</sup>Anthro-Media, Berlin, Germany

May 13<sup>th</sup>, 2022





# INTRODUCTION

### **ORCA-PARTY** – What it is about?

Speech perception among killer whales...













**Killer Whale Research** 



**Cocktail Party** 



**ORCA-PARTY:** Killer Whale Sound Type Separation

"Cocktail Party Problem", caused by multiple vocalizing killer whales  $\rightarrow$  Overlapping call type structures 

Copyright Jared Towers & Gary J. Sutton, Other Images, Pixabay Lice Source: [2] Bergler et al., FIN-PRINT A Fully-Automated Multi-Stage Deep-Learning-Based Framework for the Individual Recognition of Killer Whales, Scientific Reports, 2022

## The Killer Whale (*Orcinus Orca*) is the largest member of the dolphin family [1] [2] [3]

- Lives in stable, family-based, and social groups of several individuals [1] [2] [4]
- Communicative behavior is based on three different types of vocalization paradigms [1] [3] [5]
  - Echolocation Clicks Short pulses used for navigation and object localization
  - Whistles Narrow-band signals primarily used within close-range interactions
  - Pulsed Calls Most common type of vocalizations, subdivided into discrete, variable, and aberrant calls, showing distinct tonal properties
- Discrete Pulsed Calls (Call Types) are stereotyped and repetitive vocal activities, indicating a wide diversity of distinctive categories with significant inter- and intra-class spectral variations

Source: [2] Bergler et al., FIN-PRINT A Fully-Automated Multi-Stage Deep-Learning-Based Framework for the Individual Recognition of Killer Whales, Scientific

ler et al., Deep Representation Learning for Orca Call Type Classification, Text, Speech

May 13<sup>th</sup>, 2022 4 / 23

### **The Killer Whale**

...and the phenomenon of communication



Group of Killer Whales









## **MOTIVATION & CHALLENGES**



#### Killer Whale Sound Type Classification

- Wide diversity of distinctive call type categories with significant inter- and intra-class spectral variations [5]
- Large-scale, data-driven, and machine-based orca call type identification is imperative to gain deeper insights into orca communication
- $\rightarrow$  Machine-based call type recognition [3] [4] [5] is substantially affected by overlapping call type structures!

#### Killer Whale Sound Type Separation

- Especially longer acoustic regions of orca communication, containing a large number of vocalization events in consecutive short time intervals
- Essential for communication analysis
- $\rightarrow$  High probability of overlapping call-specific events!



Source: [3] Bergler et al., Deep Representation Learning for Orca Call Type Classification, Text, Speech, and Dialogue, 2019 Source: [4] Bergler et al., Deep Learning for Orca Call Type Identification – A Fully Unsupervised Approach, INTERSPEECH, 2019 e: [5] Bergler et al., ORCA-SLANG: An Automatic Multi-Stage Semi-Supervised Deep Learning Framework for Large-Scale Killer Whale Call Type Identification, INTERSPEECH 2021



- Robust machine learning pipeline to process massive and noise-heavy data repositories
- Limited knowledge about entire inter-/intra killer whale call type variations
- No ground truth data of overlapping call events and the associated individual components
- Huge call type-specific datasets are required to cover as much spectral variation as possible
- Single-channel acoustic events with no information about number of speakers, sound source location, speaker-specific data material, and various recording environments/setups.

**Goal:** Fully-automated machine (deep) learning-based orca sound type separation, independent of speaker-, sound source location-, and recording condition-specific knowledge, not requiring human-annotated overlapping ground truth data





## DATA MATERIAL

### **Data Archives** Killer Whale Sound Type Archive (KWSTA)



KWSTA consists of three sub-archives and is the result of applying machine (deep) learning algorithms (see ORCA-SLANG [5]) to one of the largest animal-specific data archives – The Orchive – including  $\approx$ 20,000 h underwater recordings!

- ORCA-SLANG Call Type Data Corpus (OSDC) 235,369 machine-identified orca samples, uneven distribute across 6 known call types
- Echolocation Repository (ELRP) 9,382 echolocation events, machine-identified via ORCA-TYPE [3]
- ORCA-SLANG Unknown Signal Repository (OSUR) 2,101 excerpts of either so far unseen/unknown orca sounds or background noise

The final KWSTA data repository includes 246,852 ( $\approx$ 398.1 h) unique orca events (mono, 44.1 kHz) with an average duration of  $\approx$ 6.0 s



Source: Images taken from ORCA-SLANG [5], ORCA-SPOT [1] Source: [1] Bergler et al., ORCA-SPOT: An Automatic Killer Whale Source Detection Toolkit Using Deep Learning, Scientific Reports, 2019 Source: [3] Bergler et al., Deep Representation Learning for Orca Call Type Classification, Text, Speech, and Diague, 2019 Bergler et al., ORCA-SLANG: An Automatic Multi-Stage Semi-Supervised Deep Learning Framework for Large-Scale Killer Whale Call Type Identification. INTERSPEECH 2021



#### Call Type Data Corpus (CTDC)

Human-annotated dataset including 514 non-overlapping orca call type events, unequally split and categorized into 12 distinct classes [3] [6] [7] (9 killer whale call type categories, echolocation click, whistle, and noise)

#### DeepAL Fieldwork Data 2017/2018/2019 (DLFD)

Additional acoustic data collection via a 15-meter research trimaran during our fieldwork expedition along the coastal waters of northern British Columbia (2017–2019), resulting in  $\approx$ 177.3 h (mono, 96 kHz) raw killer whale underwater recordings [1]



Source: Images taken from the DeepAL 2017–2019 expedition image collection (copyright Anthro-Media) and ORCA-SPOT [1] Source: [1] Bergler et al., ORCA-SPOT: An Automatic Killer Whale Sound Detection Toolkit Using Deep Learning, Scientific Reports, 2019 Source: [3] Bergler et al., Deep Representation Learning for Orca Call Type Classification, Text, Speech, and Dialogue, 2019 Source: [6] Bergler et al., ORCA-CLEAN: A Deep Denoising Toolkit for Killer Whale Communication, INTERSPEECH 2020 Source: [7] Bergler et al., Segmentation, Classification, and Visualization of Orca Calls Using Deep Learning, ICASSP 2019





## DATA PROCESSING

### **Data Preprocessing**

... from Audio to a Spectral Representation



Multi-Stage Data Preprocessing Procedure [1] [6]

- Conversion to a single-channel audio file
- Resampling to 44.1 kHz
- Short-Time-Fourier-Transform (STFT) using a window-size = 4,096 samples (≈100 ms) and hop-size = 441 samples (≈10 ms) → Frequency×Time (F×T) power-spectrogram
- Decibel conversion of the F×T power-spectrogram
- Orca Detection Algorithm [6] to extract a fixed temporal context of 1.28 s (T = 128)
- Linear frequency compression (nearest neighbor, fmin = 500 Hz, fmax = 10 kHz, F = 256)
- 0/1-dB-normalization (min = 100 dB, ref = +20 dB)
- $\rightarrow$  Final Output: 256×128 0/1-dB-normalized spectrogram

12/23



Source: [1] Bergler et al., ORCA-SPOT: An Automatic Killer Whale Sound Detection Toolkit Using Deep Learning, Scientific Reports, 2019 Source: [6] Bergler et al., ORCA-CLEAN: A Deep Denoising Toolkit for Killer Whale Communication, INTERSPEECH 2020



Multi-Stage Data Generation Procedure

- Random selection of 37,101 samples from the KWSTA repository 5,000 events per call type from the OSDC, 5,000 echolocation clicks of the ELRP, plus the entire OSUR data pool
- Spectral signal enhancement (denoising) by applying ORCA-CLEAN [6]
- Overlap a pair of spectrograms using a randomly chosen duration interval  $\delta \in [0.64 \, s, 1.28 \, s]$
- Randomly sub-sampling a temporal context of 1.28 s (T = 128)
- 0/1-min/max-normalization of the 256×128-large overlapping spectrogram
- 2,000 overlapping spectral events for each of the 42 combinations (8 categories 7 orca sound types plus a rejection class)

 $\rightarrow$  Final Output: ORCA-PARTY Overlapping Dataset (OPOD), consisting of 84,000 256×128-large, 0/1-min/max-normalized, overlapping spectral representations

Source: [6] Bergler et al., ORCA-CLEAN: A Deep Denoising Toolkit for Killer Whale Communication, INTERSPEECH 2020







## METHODOLOGY

### Network Architecture and Training The Setup of ORCA-PARTY



#### **ORCA-PARTY** Architecture



- Network Input: 256×128-large, 0/1-min/max-normalized overlapping signals from the OPOD
- Network Output: 8 category-specific activated segmentation masks (7 orca sound types plus a rejection class)
- Data distribution: train 58,800 (70%), dev 12,600 (15%), test 12,600 (15%)



#### **1st Experiment**

Visual inspection and classification of the network output masks from the unseen OPOD test set, while ignoring the "unknown" class  $\rightarrow$  8,400 out of 12,600 test events

#### 2nd Experiment

ORCA-TYPE [3] was trained on the denoised (ORCA-CLEAN [6]) human-labeled CTDC mask-specific data, with and without ORCA-PARTY (O-WP & O-BL) as additional data preprocessing step, evaluated on:

- Unseen non-overlapping CTDC test set
- Sliding window approach to iterate frame-wise over pre-segmented/-denoised excerpts Ψ ∈ [10.0s, 30.0s] of the unlabeled *DLFD* → Classification hypotheses of O-WP vs. O-BL !

#### **3rd Experiment**

Model transfer to train and evaluate ORCA-PARTY on a bird species, named Monk parakeets (Myiopsitta monachus), with a total of 3,000 bird call events across 4 categories (alarm, other, contact call & noise)

ource: [3] Bergler et al., Deep Representation Learning for Orca Call Type Classification, Text, Speech, and Dialogue, 2019 Source: [6] Bergler et al., ORCA-CLEAN: A Deep Denoising Toolkit for Killer Whale Communication, INTERSPEECH 2020







## **RESULTS & DISCUSSION**

Visualization/Classification Overlapping OPOD Test & CTDC Data

- Visualizations from the unseen OPOD test set, showing the original overlapping input spectrogram, compared to the classbased separation outputs
- Applying O-WP to the unseen overlapping 8,400 OPOD test samples (16,000 classification hypotheses) results in a multiclass accuracy of  $\approx$ 86.0 %
- Applying O-BL as well as O-WP to the unseen non-overlapping CTDC dataset, an average classification accuracy of  $\approx$ 96.0% vs.  $\approx$ 94.5% (dev) and  $\approx$ 94.5% vs.  $\approx$ 93.0% (test) was achieved

 $\rightarrow$  O-WP almost reaches the upper classification boundary for non-overlapping signals, provided by O-BL!

ORCA-PARTY achieved auspicious results on overlapping data, besides robustly processing non-overlapping call type events!

### **Results**







### Results

#### DeepAL Fieldwork Data & Monk Parakeets





 Applying O-BL vs. O-WP to frame-wise classify the entire DLFD archive results in the following overall amount of classification hypotheses:

 $\rightarrow$  39,569 (O-BL) vs. 51,684 (O-WP) orca events distributed across 7 categories (increase of  ${\approx}30\,\%)$ 

• ORCA-PARTY, trained on overlapping monk parakeet spectrograms, proved model transferability and achieved promising results even in noisy conditions







## **CONCLUSION & FUTURE WORK**



#### Conclusion

ORCA-PARTY, is an automatic deep learning-based approach for orca sound type separation, not requiring any human-labeled overlapping ground truth data and is independent of speaker/-source information and various recording conditions.

- Additional data enhancement step
- Similar classification results were obtained for non-overlapping events
- Significant improvements were observed during the analysis of acoustic regions with high vocalization volumes, leading to  $\approx$ 30 % more call identifications
- Promising initial results on various noisy bird calls

#### **Future Work**

- Future studies will evaluate performance on additional animal-related bioacoustic datasets
- Source code and audiovisual excerpts produced by ORCA-PARTY will be publicly available under [8]

Source: [8] Bergler Christian, Open Source GitHub-Repository





# Thank you for your attention!







### References

### **References I**



- [1] C. Bergler, H. Schröter, R. X. Cheng, V. Barth, M. Weber, E. Nöth, H. Hofer und A. Maier, "ORCA-SPOT: An Automatic Killer Whale Sound Detection Toolkit Using Deep Learning", *Scientific Reports*, Jg. 9, Dez. 2019. DOI: 10.1038/s41598-019-47335-w.
- [2] C. Bergler, A. Gebhard, J. Towers, L. Butyrev, G. Sutton, T. Shaw, A. Maier und E. Nöth, "FIN-PRINT A Fully-Automated Multi-Stage Deep-Learning-Based Framework for the Individual Recognition of Killer Whales", Scientific Reports, Jg. 11, S. 23 480, Dez. 2021. DOI: 10.1038/s41598-021-02506-6.
- [3] C. Bergler, M. Schmitt, R. X. Cheng, H. Schröter, A. Maier, V. Barth, M. Weber und E. Nöth, "Deep Representation Learning for Orca Call Type Classification", in Proc. Text, Speech, and Dialogue 2019, (Ljubljana), Bd. 11697 LNAI, Springer, 2019, S. 274–286. DOI: 10.1007/978-3-030-27947-9{\\_}23.
- [4] C. Bergler, M. Schmitt, R. X. Cheng, A. Maier, V. Barth und E. Nöth, "Deep Learning for Orca Call Type Identification A Fully Unsupervised Approach", in Proc. Interspeech, (Graz), 2019. DOI: 10.21437/Interspeech.2019-1857.
- [5] C. Bergler, M. Schmitt, A. Maier, H. Symonds, P. Spong, S. R. Ness, G. Tzanetakis und E. Nöth, "ORCA-SLANG: An Automatic Multi-Stage Semi-Supervised Deep Learning Framework for Large-Scale Killer Whale Call Type Identification", in *Proc. Interspeech*, 2021. DOI: 10.21437/Interspeech.2021-616.
- [6] C. Bergler, M. Schmitt, A. Maier, S. Smeele, V. Barth und E. Nöth, "ORCA-CLEAN: A Deep Denoising Toolkit for Killer Whale Communication", in *Proc. Interspeech*, 2020. DOI: 10.21437/Interspeech.2020-1316.
- [7] H. Schröter, E. Nöth, A. Maier, R. Cheng, V. Barth und C. Bergler, "Segmentation, Classification, and Visualization of Orca Calls Using Deep Learning", in International Conference on Acoustics, Speech, and Signal Processing, Proceedings (ICASSP), IEEE, 2019, S. 8231–8235, ISBN: 978-1-4799-8131-1. DOI: 10.1109/ICASSP.2019.8683785.
- [8] C. Bergler, Open Source GitHub-Repository, https://github.com/ChristianBergler.