Multi-View Self-Attention based Transformer for Speaker Recognition

ICASSP 2022

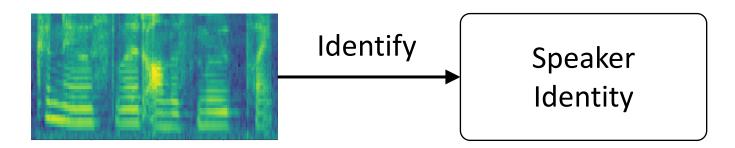
Rui Wang^{1*}, Junyi Ao^{2,3*}, Long Zhou⁴, Shujie Liu⁴, Zhihua Wei¹, Tom Ko², Qing Li³, Yu Zhang²

¹Department of Computer Science and Technology, Tongji University ²Department of Computer Science and Engineering, Southern University of Science and Technology ³Department of Computing, The Hong Kong Polytechnic University ⁴Microsoft Research Asia

*Equal contribution. Work done during internship at Microsoft Research Asia.

Speaker Recognition

Speaker recognition aims to identify the voice of the specific targets.

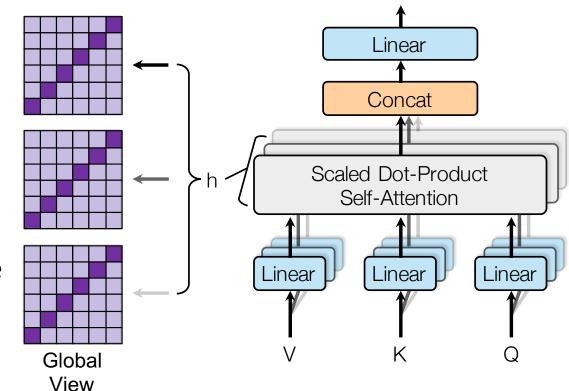


- Convolutional architectures remain dominant, such as residual network (ResNet) and time delay neural network (TDNN).
- The applications of Transformer to speaker recognition are limited, e.g., combining CNN-like architectures with self-attention by either replacing utterance-level pooling layers or frame-level convolutional blocks.

Motivation & Challenges

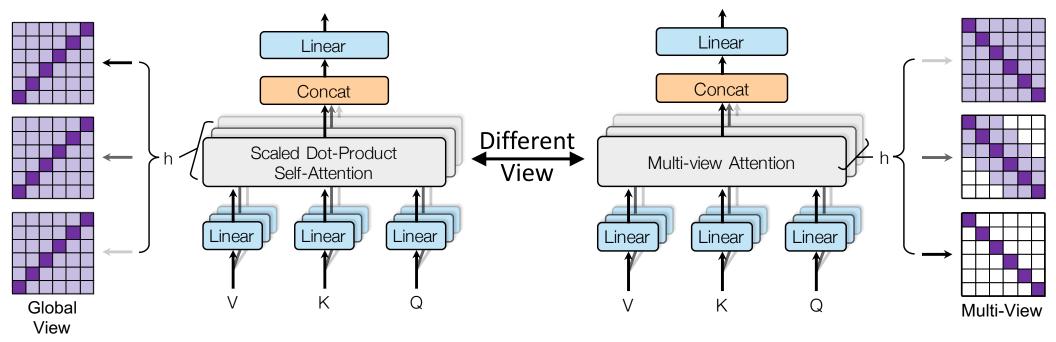
Applying Transformer to speaker tasks has two challenges:

- Transformer is hard to be scaled efficiently since acoustic features sequences are much longer than text sentences.
- Transformer is deficient in some of the inductive biases inherent to CNNs, such as translation equivalence and locality.



Multi-View Self-Attention

To enhance the Transformer's capabilities of capturing global dependencies while modeling the locality, a multi-view self-attention is proposed to employ windows with different sizes surrounding each token in a head-wise manner.

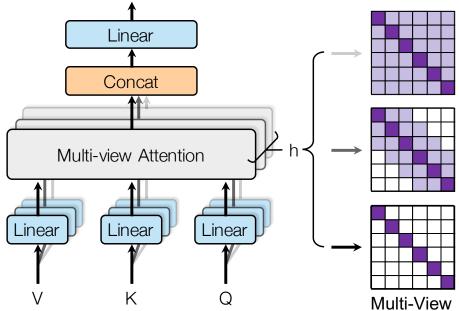


Multi-View Self-Attention

Specifically, given a fixed window size w, each token attends to $\frac{1}{2}w$ tokens on both sides.

The sliding window for the *i*-th head at the *l*-th layer to explicitly model different ranges of receptive fields by setting them as

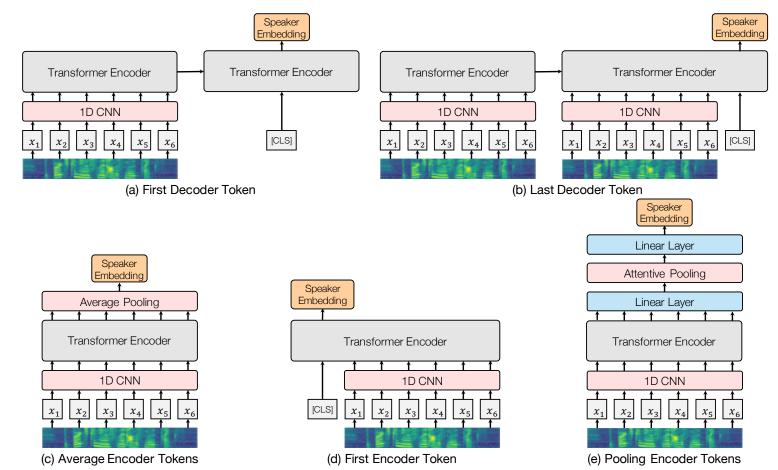
$$w_i^l = \begin{cases} 2^i + 1, & \text{if } i \ge 1 \\ 1 & i = 0 \end{cases}$$



Transformer Variants

We study five Transformer variants.

- a. First Decoder Token. Multi-layer multi-head attentive pooling.
- b. Last Decoder Token. Inputrelated pooling.
- **c.** Average Encoder Token. Temporal Average pooling.
- **d.** First Encoder Token. Use of a single token.
- e. Pooling Encoder Tokens. Like X-vector.



Experimental Setup

Datasets

- Speaker Identification:
 - VoxCeleb1 development set: over 1,000,000 utterances from 1,251 celebrities
 - VoxCeleb1 test set: over 8,251 utterances from 1,251 celebrities
- Speaker Verification:
 - VoxCeleb1/VoxCeleb2 development set: over 100,000/1,000,000 utterances from 1,211/5,994 celebrities
 - VoxCeleb1 test set: 37,720 pairs of trials and over 4,715 utterances from 40 celebrities
- Acoustic Features: 80-d mel-filter banks with the 64ms windows and 16ms shifts
- Identification Metrics: Top-1 accuracy (ACC)
- Verification Metrics: Equal error rate (EER)

Experiment Results

We compare these five variants with or without multi-view self-attention (MV) and report the performance on VoxCeleb1 test set.

- Multi-view self-attention achieves improvement in most settings.
- Multi-view self-attention can generate various token representation.

Variant	Archtecture Details	ACC (%) 个		EER (%) ↓		EER (%) ↓	
		Vox1	+ MV	Vox1	+MV	Vox2	+MV
а	Attentive Pooling	94.33	94.36	5.33	5.45	2.72	2.56
b	Input-related Pooling	93.61	94.09	5.89	5.40	2.92	2.68
С	Average Pooling	92.96	91.81	6.33	6.13	3.60	3.23
d	Single Token	92.29	88.16	5.96	7.37	3.32	3.96
е	Like X-vector	95.04	96.38	4.77	4.35	2.89	2.68

Experiment Results

We compare the proposed method with VGG, TDNN, ResNet, and Transformer.

- We boost the Transformer to be competitive or superior to VGG, TDNN, and ResNet-like networks.
- Compared to previous Transformers, we achieve significant improvement.
- Our Transformer classification model achieves the state-of-the-art performance.

Training on VoxCeleb1 development								
Implementaion	Extractor	ACC (%)	EER (%)					
VGG-M	VGG	80.5	7.8					
X-vector	TDNN	-	7.83					
Atten. Stats.	TDNN	-	3.85					
Cai et al.	ResNet	89.9	4.46					
Chung et al.	ResNet	89.0	5.26					
SAEP	Transformer	-	7.13					
S-vectors	Transformer	-	5.50					
Our work (e)	CNN+Transformer	96.38	4.35					

Training on VoxCeleb2 development							
Implementaion	Extractor	EER (%)					
MHA	VGG	3.19					
Atten. Stats.	TDNN	2.59					
Xie et al.	ResNet	3.22					
SAEP	Transformer	5.44					
S-vectors	Transformer	2.67					
Our work (a)	CNN+Transformer	2.56					
Our work (e)	CNN+Transformer	2.68					

Conclusion

- We propose a multi-view self-attention mechanism for Transformerbased speaker networks, which enable to capture global dependencies and model the locality.
- We study the proposed multi-view self-attention mechanism in **five different Transformer variants** with different network architectures, embedding locations, and pooling methods.
- Our method achieves 96.38% top-1 accuracy for speaker identification task on Voxceleb1 and 4.35% and 2.56% EER on VoxCeleb1 and VoxCeleb2, respectively, for speaker verification task.

Multi-View Self-Attention based Transformer for Speaker Recognition

ICASSP 2022

Rui Wang^{1*}, Junyi Ao^{2,3*}, Long Zhou⁴, Shujie Liu⁴, Zhihua Wei¹, Tom Ko², Qing Li³, Yu Zhang²

¹Department of Computer Science and Technology, Tongji University ²Department of Computer Science and Engineering, Southern University of Science and Technology ³Department of Computing, The Hong Kong Polytechnic University ⁴Microsoft Research Asia

*Equal contribution. Work done during internship at Microsoft Research Asia.