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» Multistatic localization becomes a popular research topic as it finds applications in 1 ; o st Yiarsssers) = r{ Y1}

target tracking, automatic driving, robotics, and many others. 7 L Dy v = 8RS — 2r{ Y1k, 2k s 1):3k) }
The Information of time-delay (TD), differential-arrival-times, Doppler-frequency- — [(d" S TR Sy P Y + tr{ Y{2k+1):38,(2k+1):3k) }
shift (DFS) can be used. . = P17y, Tats, NPT B Y Yiskss skta) = tr{ Y1k, (k+1):28) ]
Transmitter position may not be known =t {Y((2kp )3k, (k4 1):20) 1
- The transmitter may be located somewhere in which the GPS is not accessible. L Yesk+s) = r{ ¥k 10
- It could also happen In the passive coherent location (PCL) systems, where an riSrzs e Sl A T S Sy B ] — Yisrta,ak+3) — 2Y(3k+1,30+3)
existing facility 1s used as the transmitter and which facility the signal comes from Fdzy -0 Bl 52 = 1Bdy Bdgo -0 By ] = Y(ak41,3k+1)
for positioning Is not known. i Yisk+e) = WY1k k4120 b — Yiaks3,3k4)
- The position of the transmitter can even be intentionally left unknown for lower = (=T, 08,07 7, 0.1,,0. %:ﬂ;]frﬁ — Ykt 1.3k44) — Y3k+3.3k42) — Y(3k+1,3k42)
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S A | Y(3k+a,3k < tf{Y k+1):2k, (k-+1):2k) |+
R mr o1 (3k+4,3k+4) (( (k+1)
0..,0..— i 0,05, g] ,

Y y
07,0}, 07 ,0,1,007, JT 1 ~ 0,
T ATYST'A AT ]

» Introducing Y = yy'and dropping the nonconvex ynere & —
rank-1 constraint, we obtain the following SDP:

Measurement Model

O transmitter

O receiver | Simulation Results

¢ object u® and u” : object position and velocity,
respectively (unknown);

t°: transmitter position (unknown); To[ae T T ] _ _ -
s? J-th receiver position (known); " e /T ransmitter and receiver posmﬁ
‘ randomly selected in the 3-D space of

4 .

size (-4000,4000) x (-4000,4000) X (-
_ 4000,4000) m3;
o Ml o - u® =[-1000,500,1500]" m and

Fig. Illustration of the localization scenario of MOST, solid lines : * ME P T :
represent the indirect paths and dashed lines denote the direct paths. - | u :[15,15,30] m/ S,

T - b’ =200 m and b{ =5 m/s;
* The measurement range In the indirect path and direct path are o s 0 s w0 ds 20 - Fig. 2 shows the simulation results.
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r :‘ 0 _g° ° _t° Cte =|t° =s° ‘-|- b’+¢,.,]=1...,N. Fig. 2 MSE comparison for 3-D localization: The proposed SDR method performs
] . & ‘ J & ten randomly generated configurations each much better than TSWLS and

« The measurement range rate In the indirect path and direct path are Is With one transmitter and five receivers. \achieves the CRLB accuracy at W
— noise levels.
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 The proposed SDR method still
outperforms the TSWLS method at
= w0, S large noise levels when using six

40 5DP

0| + me| - receivers.
T - « \We list in Table 1 the proportion of
solutions of the proposed method In

Semidefinite Relaxation Method I this simulation, indicating that

Fig. 3 MSE comparison for 3-D localization: K rank-1 solutions can be achieved. J

ten randomly generated configurations each
with one transmitter and six receivers. Table 1. Proportion of Rank-1 Solutions (10000 MC Runs in Total

e Model Transformation: for Each Value of o2)

0 . . . — 10lg(c®) | -10 | 5 ] 0 | 5 | 10 | 15 | 20 | 25 | 30
Prop.(%) | 100 | 100 | 100 | 992 | 96.7 | 93.4 | 878 | 77.8 | 671.7
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- In the indirect path, let &° =|u’ —t°| . (@5 = 18517 + 87787 = d;b] — Sf = |7 = 8Tllea, ol . me
. 0 0 . _ |

Moving £° and b to the left-hand side ;- ;. | (3) / \

 The estimation accuracy Improves

and squaring both sides yield
1 (2 — [18°12) + 87T — 15€° — 1t ' 1o - as the number of recelvers increases.
2+ 7 : it ~ 271+ By defining the new vector, The proposed method outperforms
= |lu” — siller;, 3=1,..., N, (1) v =lal et b by & et v et the TSWLS method when using
plined T;"f "‘T’“ SN ST TS | B — fewer receivers.

where {:f':'? _ ||ur}||2 - £r}2 - EE{}E’;{ - EJ:fE - | | Number of receivers /
» the pS@UdO'Imear equatlons In (1), (2), Fig. 4 MSE comparison for 3-D localization at

- The equation for range rate Is obtained (3), and (4) can be written in the matrix o =10 m, as the number of receivers varies:
based on time-derivative of (1) and form: ten randomly generated configurations.
Incorporating the frequency offset,

We stack the noise into vectors &, =l .., ,.....6, .1, €, &,and &;can be defined similarly.
Composite vector & =[g/ ,£] ,&;,£]]". Assume that E(¢) =0, E(ggT ) = Q.
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where £7 = po_,ot” and ¢f = u” 4’ — £°¢° b= [by b by, b5]", A=[A] AL A AL".

— £76% — £°b7 — £°b% — bYbS. * We have formulated a WLS problem and solved it approximately using SDP by

. _ _ _ * The definitions of the vectors and employing the SDR technique.
- Similar processing for direct path gives matrices in (5) are » The proposed SDR method is able to achieve the CRLB accuracy for the estimation

of object position and velocity under mild Gaussian noise.
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