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Introduction

• Background

– Multistatic localization becomes a popular research topic as it finds applications in

target tracking, automatic driving, robotics, and many others.

– The information of time-delay (TD), differential-arrival-times, Doppler-frequency-shift

(DFS) can be used.

• Unknown Transmitter Position

– The transmitter may be located somewhere in which the GPS is not accessible.

– It could happen in the passive coherent location (PCL) systems, where an existing

facility is used as the transmitter.

– The transmitter position can even be intentionally left unknown for lower hardware and

implementation costs.

• Existing Methods

– Methods based on TD measurements only:

Two-step weighted least-squares (TSWLS) and Semidefinite relaxation (SDR).

– Method based on TD and DFS measurements: TSWLS.

• Contribution

– We propose an accurate SDR method for estimating the object position and velocity

when the transmitter position is unknown.
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Introduction

• Illustration of the localization scenario

Figure 1: Illustration of the localization scenario of moving object and
stationary transmitter (MOST): Receivers are synchronized.
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Measurement Model

• The true ranges in the indirect and direct paths can be expressed as

r
o
j = ∥uo − s

o
j∥ + ∥uo − t

o∥ + b
o
τ , j = 1, . . . , N,

d
o
j = ∥so

j − t
o∥ + b

o
τ , j = 1, . . . , N. (1)

where

– uo and u̇o: object position and velocity, respectively (unknown);

– to: transmitter position (unknown);

– so
j : j-th receiver position (known);

– boτ time offset at the transmitter (unknown).

• The true range rates, which are transformed from the DFS, in the indirect and direct

paths are:

ṙj
o
= ρ

T
uo−so

j
u̇

o
+ ρ

T
uo−tou̇

o
+ b

o
f , j = 1, . . . , N,

ḋj
o
= b

o
f , j = 1, . . . , N, (2)

where bof is the unknown frequency offset.
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Measurement Model

• In practice, the measurements observed by the receiver are contaminated by noise, i.e.,

rj = r
o
j + εr,j, j = 1, . . . , N,

dj = d
o
j + εd,j, j = 1, . . . , N,

ṙj = ṙ
o
j + ε̇ṙ,j, j = 1, . . . , N,

ḋj = ḋ
o
j + ε̇ḋ,j, j = 1, . . . , N, (3)

where εr,j, ε̇ṙ,j, εd,j, and ε̇ḋ,j are the additive noise.
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Problem Formulation

• Dealing with the indirect path models.

Transforming the indirect path range measurement model gives

1

2
(r

2
j − ∥so

j∥
2
) + s
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j u

o − rjρ
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2
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o
j∥εr,j, j = 1, . . . , N, (4)

where φo
1 = ∥uo∥2 − ρo2 − 2ρoboτ − boτ

2, ρo = ∥uo − to∥, and the second-order noise

terms ε2r,j are neglected.

The equation for range rate is obtained based on time-derivative of (4) and incorporating

the frequency offset,

rjṙj + s
oT
j u̇

o − ṙjρ
o − rjρ̇

o − ṙjb
o
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o
f − φ

o
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= ρ
T
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o
εr,j + ∥uo − s

o
j∥ε̇ṙ,j, j = 1, . . . , N, (5)

where ρ̇o = ρT
uo−tou̇

o and φo
2 = uoT u̇o − ρoρ̇o − ρ̇oboτ − ρobof − boτb

o
f .
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• Dealing with the direct path models. The direct path range measurement model can be

manipulated similarly and approximated by

1

2
(d

2
j − ∥so
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2
) + s

oT
j t

o − djb
o
τ −

1

2
φ

o
3 = ∥to − s

o
j∥εd,j,

j = 1, . . . , N, (6)

where φo
3 = ∥to∥2 − bo2τ .

The frequency offset is present in the direct path DFS observations

ḋj = b
o
f + ε̇ḋ,j, j = 1, . . . , N. (7)
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Problem Formulation

• Define the unknown vector yo:
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Using yo, we can express the pseudo-linear equations in (4), (5), (6), and (7) as the

following matrix forms:

br − Ary
o ≃ Brεr, (8a)

bṙ − Aṙy
o ≃ Bṙεr + Brε̇ṙ, (8b)

bd − Ady
o ≃ Bdεd, (8c)

bḋ − Aḋy
o
= ε̇ḋ. (8d)

Combining the approximate equations in (8a)-(8d) yields

b − Ay
o ≃ Bε. (9)
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Problem Formulation

• Base on (9), we can formulate a WLS problem to estimate yo:

min
y

(b − Ay)
T
Σ

−1
(b − Ay), (10a)

s.t. y
2
(3k+3) = ∥y(1:k) − y((2k+1):3k)∥

2
, (10b)

y(3k+4) =
(y(1:k) − y((2k+1):3k))

T

∥y(1:k) − y((2k+1):3k)∥
y((k+1):2k), (10c)

y(3k+3)y(3k+4) = (y(1:k) − y((2k+1):3k))
T
y((k+1):2k), (10d)

y(3k+5) = ∥y(1:k)∥
2 − (y(3k+3) + y(3k+1))

2
, (10e)

y(3k+6) = −(y(3k+1) + y(3k+3))(y(3k+2) + y(3k+4))

+ y
T
(1:k)y(k+1:2k), (10f)

y(3k+7) = ∥y((2k+1):3k)∥
2 − y

2
(3k+1), (10g)

where Σ = BQBT .
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• Let Y = yyT . Problem (10) can be relaxed into the following semidefinite program

(SDP) by dropping the rank(Y ) = 1 constraint:

min
y

tr

{[
Y y

yT 1

] [
ATΣ−1A −ATΣ−1b

−bTΣ−1A bTΣ−1b

]}
, (11a)

s.t. Y(3k+3,3k+3) = tr{Y (1:k,1:k)} − 2tr{Y (1:k,(2k+1):3k)}

+ tr{Y ((2k+1):3k,(2k+1):3k)}, (11b)

Y(3k+3,3k+4) = tr{Y (1:k,(k+1):2k)} − tr{Y ((2k+1):3k,(k+1):2k)}, (11c)

y(3k+5) = tr{Y (1:k,1:k)} − Y(3k+3,3k+3) − 2Y(3k+1,3k+3)

− Y(3k+1,3k+1), (11d)

y(3k+6) = tr{Y (1:k,k+1:2k)} − Y(3k+3,3k+4)

− Y(3k+1,3k+4) − Y(3k+3,3k+2) − Y(3k+1,3k+2), (11e)

y(3k+7) = tr{Y (2k+1:3k,2k+1:3k)} − Y(3k+1,3k+1), (11f)

Y(3k+4,3k+4) ≤ tr{Y ((k+1):2k,(k+1):2k)}, (11g)[
Y y

yT 1

]
⪰ 0. (11h)
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Simulations

• Parameter Setup

– Transmitter and receiver positions: randomly selected in the 3-D space of size

(−4000, 4000) × (−4000, 4000) × (1000, 3000) m3.

– Object position and velocity: uo = [−1000, 500, 1500]T m, u̇o = [15, 15, 30]T

m/s.

– Unknown time and frequency offsets: boτ = 200 m, bof = 5 m/s.

– Covariance matrix: Q = blkdiag(Qr,Qṙ,Qd,Qḋ), Qṙ = 0.1Qr and Qḋ =

0.1Qd.

– MSE: MSE(ζ̂) = 1
KL

∑K
j=1

∑L
i=1 ∥ζ̂ji − ζo

j∥
2,

where ζ̂ji is the estimate of the true value ζo
j in the i-th Monte Carlo (MC) run for

the j-th configuration. K and L are the numbers of configurations and MC runs,

respectively. Set K = 10 and L = 1000.
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Simulations
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Figure 2: MSE comparison for 3-D localization: ten randomly generated
configurations each with one transmitter and five receivers.
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Simulations
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Figure 3: MSE comparison for 3-D localization: ten randomly generated
configurations each with one transmitter and six receivers.
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Simulations
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Figure 4: MSE comparison for 3-D localization at σ = 10 m as the number
of receivers varies: ten randomly generated configurations.
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Thank You
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