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Abstract
Nonnegative matrix factorization (NMF) has been traditionally considered a promising approach for audio source separation. While standard NMF is only suited for single-channel mixtures, extensions to consider multi-channel data have been also
proposed. Among the most popular alternatives, multichannel NMF (MNMF) and further derivations based on constrained spatial covariance models have been successfully employed to separate multi-microphone convolutive mixtures. This letter
proposes a MNMF extension by considering a mixture model with Ray-Space-transformed signals, where magnitude data successfully encodes source locations as frequency-independent linear patterns. We show that the MNMF algorithm can be
seamlessly adapted to consider Ray-Space-transformed data, providing competitive results with recent state-of-the-art MNMF algorithms in a number of configurations using real recordings.

1. Related Works 2. The Ray Space MNMF (RS-MNMF)

3. Results
Setup and metrics

• 5.5m×3.4m×3.3m Room with 𝑇60 ≈ 0.4s
• ULA of  𝐼 = 32 microphones and 9 source locations
• Mixtures with 𝐽 = {2,3} sources with 3s signals of 

male/female speech and music
• Results compared with BS-MNMF[2,] FastMNMF[3], 

DOA-MNMF[4], WN-MNMF[5] and ILRMA[6].
• Performance is evaluated in terms of :
• Signal-to-artifacts ratio (SAR), 
• Signal-to-distortion ratio (SDR),
• Signal-to-interference ratio (SIR).
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Results with J=3 sources  

Multichannel NMF model (MNMF)
• We consider a uniform linear array (ULA) of I channel acquiring the mixture of J acoustic
sources.

• Under the local Gaussian model MNMF describes the mixture at the ith channel as
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• 𝑮" ∈ ℂ5×5 is the spatial covariance matrix of the jth source
• 𝑤",- 𝜔 , ℎ",- 𝑛 are the basis functions and the activation modeling the source PSD 𝑝" 𝜔, 𝑛 .

Ray SpaceTransofrm (RST)
RST [1] is a linear operator 𝚿 ∈ ℂ5×78that maps the signals of a ULA onto the Ray Space

𝒁 𝜔, 𝑛 = 𝚿9 𝜔 𝒚 𝜔, 𝑛 .	

Array signals can be recovered using the inverse RST T𝚿 = 𝚿𝚿: ;$𝚿
𝒚 𝜔, 𝑛 ≈ T𝚿 𝜔 𝒁(𝜔, 𝑛).
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Fig. 2. 2D graphical representation of the office room setup (top view).

V. EXPERIMENTS

The performance of the RS-MNMF is compared with respect
to BS-MNMF and recent state-of-the-art multichannel NMF
techniques. In particular, we considered FastMNMF [19], DOA-
MNMF [16], WN-MNMF [20], and ILRMA [17].

In order to evaluate the proposed technique, we performed
a set of experiments in a reverberant environment. We adopted
an ULA of I = 32 microphones composed by two eSticks [30].
To increase the variety of input data, the RIR between each
position of the source and the microphones was estimated using
sweep excitation [31], [32]. The measurements were performed
in an office room with dimensions 5.5 m× 3.4 m× 3.3 m and
an estimated averageT60 ≈ 0.4 s. The RIRs between the micro-
phones and nine source locations were acquired using a Genelec
8020C [33] loudspeaker. Source locations are approximately
organized on a rectangular grid with distances between 0.3 m
and 0.9 m from the lying line of the array. The setup is illustrated
in Fig. 2.

Array signals were computed through the convolution be-
tween the acquired RIR and 3 s extracts of the source sig-
nals (male and female speakers and no-drum music signals)
taken from dev1 dataset of [34] such that J = 3 sources are
active simultaneously. The procedure is implemented in MAT-
LAB [35].1 Signals are processed at a sampling rate of 8 kHz,
the STFT adopts a hamming window of size 256 with 75%
overlap and 512 FFT points. The number of bases for each
source #Kj and the number of iterations were empirically set
to 12 and 100, respectively, and we adopted the same values
for all the employed algorithms. For what concerns BS-MNMF,
we adopted M = I = 32 angles (6) uniformly sampled in the
range ∓π

2 . The number of Ray Space points (8) is set to be
equal to the number of microphones LD = 32, with L = 8
subarrays andD = 4 directions (9) uniformly sampled such that
µw ∈ {−0.06, 0.06}. We empirically found that β = 0.9 in (13)
provides an overall improved performance compared to β = 0
(IS divergence). Results with both β values are reported. For
what concerns the reference algorithms, we set the parameters
following the suggestions available in the related manuscripts.
For all the techniques, the values of the parameters were tuned
observing the results obtained with a validation dataset including
J = 2 sources with 3 s speech signals taken from [36] in a subset
of locations of Fig. 2. In order to assess the performance of
the proposed algorithm, we compute the SAR, SDR, and SIR
metrics [36] for each microphone signal, and the average value
over all the microphone signals of these metrics is considered.

1All the related materials and some demos are publicly accessible at https://
github.com/polimi-ispl/rs-mnmf

Fig. 3. The SAR, SDR, and SIR averages and standard deviations obtained
by each BSS algorithm under analysis for (a) speech and (b) music signals.

A. Results

In Fig. 3, the average and standard deviation of the metrics
computed for every combination of J = 3 with the different
algorithms are reported. The results in Fig. 3(a) shows the
average between the metrics obtained with J = 3 male speech
source signals and J = 3 female speech source signals. It is
observed that FastMNMF provides the best SIR performance,
while ILRMA outperforms the other techniques in terms of
SAR and SDR. Compared to FastMNMF, RS-MNMF achieves
on average higher SAR and comparable SDR. As regards the
SIR, RS-MNMF records a better performance with respect to
both DOA-MNMF and WN-MNMF other than BS-MNMF. The
results in Fig. 3(b) are obtained with music source signals.
In this case, RS-MNMF and BS-MNMF show the best per-
formance. In particular, the proposed RS-MNMF achieves the
highest SIR on average. In general, the possibility of varying the
cost function allows tuning the performance to favor separation
(SIR) (e.g., with β = 0) over distortion and/or artifacts. In
fact, it is known [37]–[40] that higher separation capabilities
usually correspond to an increased artifact level. Interestingly,
from Fig. 3, we can observe that despite RS-MNMF employs
a fixed transformation, regardless of the source type, the re-
sults are more consistent than the other techniques, thanks to
the inherent representation of the source position in the Ray
Space.

Further comments, results with J = 2 sources, and an anal-
ysis of the robustness of the proposed technique to different
initializations are offered in the supplementary material.

VI. CONCLUSION

In this letter we proposed the adoption of the Ray Space
Transform representation for the separation of speech signals
from array data using the multichannel nonnegative matrix
factorization framework. The results showed that the Ray Space
is a suitable representation for applying MNMF algorithm and
it is effective for the application in real world scenarios. The
adoption of the Ray Space let us enhance the performance
with respect to the other unconstrained MNMF algorithms and
we obtained competitive results in comparison to the lastest
constrained MNMF techniques, in particular in terms of SIR.
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Fig. S1. The SAR, SDR, and SIR averages and standard deviations obtained
by each BSS algorithm under analysis for (a) speech and (b) music signals.

S.I. RESULTS WITH TWO SOURCES

In this supplementary material we provide additional results
considering a scenario with two sources active simultaneously.
We consider the same setup described in Sec. V, adopting all
the combinations of J = 2 sources. The source signals are the
same employed in the three sources scenario introduced in
Sec. V. Hence, we considered male and female speech signals
and music signals.

From an overall inspection of Fig. S1, we can observed
the same trend in the performance of the techniques as in
the three sources scenario. In particular, in the case of speech
source signals (Fig. S1(a)), here, the FastMNMF provides on
average the highest values of the three metrics (SAR = 11dB,
SDR = 5.6 dB, SIR = 12 dB) followed by ILRMA with
(SAR = 9.5 dB, SDR = 4.4 dB, SIR = 8dB). Nonetheless,
RS-MNMF outperformed DOA-MNMF, WN-MNMF and BS-
MNMF in terms of SDR and SIR. As a matter of fact RS-
MNMF(� = 0.9) records SDR = 0.83 dB and SIR = 5dB on
average. In addition, RS-MNMF(� = 0.9) provides the lowest
standard deviation for all the three metrics.

As regards the separation of J = 2 music sources, i.e.,
a flute and a guitar signal, the results associated to each
technique are reported in Fig. S1(b). Similarly to the three
sources scenario, also in this case RS-MNMF is able to
provide the best performance in terms of SIR. Moreover,
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Fig. S2. Average and standard deviation of the metrics obtained with ten
executions of the algorithms. (a) Results for the first source. (b) Results
relative to the second source.

here, the proposed technique records SDR higher than BS-
MNMF, namely SDR = 7.8 dB for RS-MNMF(� = 0) and
SDR = 6.9 dB for BS-MNMF.

S.II. ANALYSIS OF INITIALIZATION ROBUSTNESS

In order to evaluate the robustness of the proposed technique
with respect to different initializations, we performed an
analysis of the separation performances randomly varying the
initial values of the parameters. In particular, we considered
one fix setup concerning J = 2 sources with two male speech
signals. The locations of the sources are labeled in Fig. 2 as
positions 1 and 3. We run the algorithms 10 times varying
the initial parameters randomly. Successively, the estimates of
the sources are evaluated in terms of SAR, SDR and SIR. In
Fig. S2 the average and the standard deviations of the metrics
given by the multiple executions are reported. In general from
the inspection of Fig. S2, we can note that the proposed RS-
MNMF presents standard deviations of the metrics in line
with respect to the other techniques under analysis such as
FastMNMF, DOA-MNMF and BS-MNMF. Nonetheless, the
lowest values in standard deviation are given by WN-MNMF
SAR (Fig. S2(a)) and ILRMA SIR (Fig. S2(b)). Noteworthy,
the standard deviations provided by the RS-MNMF are rather
consistent for the two sources, independently of the metric.
In fact, the difference in the performance is below 1 dB
for both RS-MNMF(� = 0.9) and RS-MNMF(� = 0). Only the
DOA-MNMF achieves the same result for all the three metrics.
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Mirco Pezzoli, Student Member, IEEE, Julio José Carabias-Orti, Maximo Cobos, Senior Member, IEEE, Fabio

Antonacci, Member, IEEE and Augusto Sarti, Senior Member, IEEE

0

10

0

10

SAR SDR SIR

SAR SDR SIR

(a)

  

(b)

FastMNMF DOA-MNMF WN-MNMF BS-MNMF ILRMARS-MNMF
(β = 0.9)

RS-MNMF
(β = 0)

[d
B

]
[d

B
]

Fig. S1. The SAR, SDR, and SIR averages and standard deviations obtained
by each BSS algorithm under analysis for (a) speech and (b) music signals.

S.I. RESULTS WITH TWO SOURCES

In this supplementary material we provide additional results
considering a scenario with two sources active simultaneously.
We consider the same setup described in Sec. V, adopting all
the combinations of J = 2 sources. The source signals are the
same employed in the three sources scenario introduced in
Sec. V. Hence, we considered male and female speech signals
and music signals.

From an overall inspection of Fig. S1, we can observed
the same trend in the performance of the techniques as in
the three sources scenario. In particular, in the case of speech
source signals (Fig. S1(a)), here, the FastMNMF provides on
average the highest values of the three metrics (SAR = 11dB,
SDR = 5.6 dB, SIR = 12 dB) followed by ILRMA with
(SAR = 9.5 dB, SDR = 4.4 dB, SIR = 8dB). Nonetheless,
RS-MNMF outperformed DOA-MNMF, WN-MNMF and BS-
MNMF in terms of SDR and SIR. As a matter of fact RS-
MNMF(� = 0.9) records SDR = 0.83 dB and SIR = 5dB on
average. In addition, RS-MNMF(� = 0.9) provides the lowest
standard deviation for all the three metrics.

As regards the separation of J = 2 music sources, i.e.,
a flute and a guitar signal, the results associated to each
technique are reported in Fig. S1(b). Similarly to the three
sources scenario, also in this case RS-MNMF is able to
provide the best performance in terms of SIR. Moreover,

Submitted: January 17, 2021

SAR SDR SIR

SAR SDR SIR

(a)

  

(b)

FastMNMF DOA-MNMF WN-MNMF BS-MNMF ILRMARS-MNMF
(β = 0.9)

RS-MNMF
(β = 0)

[d
B

]
[d

B
]

0

20

0

20

Fig. S2. Average and standard deviation of the metrics obtained with ten
executions of the algorithms. (a) Results for the first source. (b) Results
relative to the second source.

here, the proposed technique records SDR higher than BS-
MNMF, namely SDR = 7.8 dB for RS-MNMF(� = 0) and
SDR = 6.9 dB for BS-MNMF.

S.II. ANALYSIS OF INITIALIZATION ROBUSTNESS

In order to evaluate the robustness of the proposed technique
with respect to different initializations, we performed an
analysis of the separation performances randomly varying the
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one fix setup concerning J = 2 sources with two male speech
signals. The locations of the sources are labeled in Fig. 2 as
positions 1 and 3. We run the algorithms 10 times varying
the initial parameters randomly. Successively, the estimates of
the sources are evaluated in terms of SAR, SDR and SIR. In
Fig. S2 the average and the standard deviations of the metrics
given by the multiple executions are reported. In general from
the inspection of Fig. S2, we can note that the proposed RS-
MNMF presents standard deviations of the metrics in line
with respect to the other techniques under analysis such as
FastMNMF, DOA-MNMF and BS-MNMF. Nonetheless, the
lowest values in standard deviation are given by WN-MNMF
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the standard deviations provided by the RS-MNMF are rather
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Fig. 2. 2D graphical representation of the office room setup (top view).

V. EXPERIMENTS

The performance of the RS-MNMF is compared with respect
to BS-MNMF and recent state-of-the-art multichannel NMF
techniques. In particular, we considered FastMNMF [19], DOA-
MNMF [16], WN-MNMF [20], and ILRMA [17].

In order to evaluate the proposed technique, we performed
a set of experiments in a reverberant environment. We adopted
an ULA of I = 32 microphones composed by two eSticks [30].
To increase the variety of input data, the RIR between each
position of the source and the microphones was estimated using
sweep excitation [31], [32]. The measurements were performed
in an office room with dimensions 5.5 m× 3.4 m× 3.3 m and
an estimated averageT60 ≈ 0.4 s. The RIRs between the micro-
phones and nine source locations were acquired using a Genelec
8020C [33] loudspeaker. Source locations are approximately
organized on a rectangular grid with distances between 0.3 m
and 0.9 m from the lying line of the array. The setup is illustrated
in Fig. 2.

Array signals were computed through the convolution be-
tween the acquired RIR and 3 s extracts of the source sig-
nals (male and female speakers and no-drum music signals)
taken from dev1 dataset of [34] such that J = 3 sources are
active simultaneously. The procedure is implemented in MAT-
LAB [35].1 Signals are processed at a sampling rate of 8 kHz,
the STFT adopts a hamming window of size 256 with 75%
overlap and 512 FFT points. The number of bases for each
source #Kj and the number of iterations were empirically set
to 12 and 100, respectively, and we adopted the same values
for all the employed algorithms. For what concerns BS-MNMF,
we adopted M = I = 32 angles (6) uniformly sampled in the
range ∓π

2 . The number of Ray Space points (8) is set to be
equal to the number of microphones LD = 32, with L = 8
subarrays andD = 4 directions (9) uniformly sampled such that
µw ∈ {−0.06, 0.06}. We empirically found that β = 0.9 in (13)
provides an overall improved performance compared to β = 0
(IS divergence). Results with both β values are reported. For
what concerns the reference algorithms, we set the parameters
following the suggestions available in the related manuscripts.
For all the techniques, the values of the parameters were tuned
observing the results obtained with a validation dataset including
J = 2 sources with 3 s speech signals taken from [36] in a subset
of locations of Fig. 2. In order to assess the performance of
the proposed algorithm, we compute the SAR, SDR, and SIR
metrics [36] for each microphone signal, and the average value
over all the microphone signals of these metrics is considered.

1All the related materials and some demos are publicly accessible at https://
github.com/polimi-ispl/rs-mnmf

Fig. 3. The SAR, SDR, and SIR averages and standard deviations obtained
by each BSS algorithm under analysis for (a) speech and (b) music signals.

A. Results

In Fig. 3, the average and standard deviation of the metrics
computed for every combination of J = 3 with the different
algorithms are reported. The results in Fig. 3(a) shows the
average between the metrics obtained with J = 3 male speech
source signals and J = 3 female speech source signals. It is
observed that FastMNMF provides the best SIR performance,
while ILRMA outperforms the other techniques in terms of
SAR and SDR. Compared to FastMNMF, RS-MNMF achieves
on average higher SAR and comparable SDR. As regards the
SIR, RS-MNMF records a better performance with respect to
both DOA-MNMF and WN-MNMF other than BS-MNMF. The
results in Fig. 3(b) are obtained with music source signals.
In this case, RS-MNMF and BS-MNMF show the best per-
formance. In particular, the proposed RS-MNMF achieves the
highest SIR on average. In general, the possibility of varying the
cost function allows tuning the performance to favor separation
(SIR) (e.g., with β = 0) over distortion and/or artifacts. In
fact, it is known [37]–[40] that higher separation capabilities
usually correspond to an increased artifact level. Interestingly,
from Fig. 3, we can observe that despite RS-MNMF employs
a fixed transformation, regardless of the source type, the re-
sults are more consistent than the other techniques, thanks to
the inherent representation of the source position in the Ray
Space.

Further comments, results with J = 2 sources, and an anal-
ysis of the robustness of the proposed technique to different
initializations are offered in the supplementary material.
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is a suitable representation for applying MNMF algorithm and
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V. EXPERIMENTS

The performance of the RS-MNMF is compared with respect
to BS-MNMF and recent state-of-the-art multichannel NMF
techniques. In particular, we considered FastMNMF [19], DOA-
MNMF [16], WN-MNMF [20], and ILRMA [17].

In order to evaluate the proposed technique, we performed
a set of experiments in a reverberant environment. We adopted
an ULA of I = 32 microphones composed by two eSticks [30].
To increase the variety of input data, the RIR between each
position of the source and the microphones was estimated using
sweep excitation [31], [32]. The measurements were performed
in an office room with dimensions 5.5 m× 3.4 m× 3.3 m and
an estimated averageT60 ≈ 0.4 s. The RIRs between the micro-
phones and nine source locations were acquired using a Genelec
8020C [33] loudspeaker. Source locations are approximately
organized on a rectangular grid with distances between 0.3 m
and 0.9 m from the lying line of the array. The setup is illustrated
in Fig. 2.

Array signals were computed through the convolution be-
tween the acquired RIR and 3 s extracts of the source sig-
nals (male and female speakers and no-drum music signals)
taken from dev1 dataset of [34] such that J = 3 sources are
active simultaneously. The procedure is implemented in MAT-
LAB [35].1 Signals are processed at a sampling rate of 8 kHz,
the STFT adopts a hamming window of size 256 with 75%
overlap and 512 FFT points. The number of bases for each
source #Kj and the number of iterations were empirically set
to 12 and 100, respectively, and we adopted the same values
for all the employed algorithms. For what concerns BS-MNMF,
we adopted M = I = 32 angles (6) uniformly sampled in the
range ∓π

2 . The number of Ray Space points (8) is set to be
equal to the number of microphones LD = 32, with L = 8
subarrays andD = 4 directions (9) uniformly sampled such that
µw ∈ {−0.06, 0.06}. We empirically found that β = 0.9 in (13)
provides an overall improved performance compared to β = 0
(IS divergence). Results with both β values are reported. For
what concerns the reference algorithms, we set the parameters
following the suggestions available in the related manuscripts.
For all the techniques, the values of the parameters were tuned
observing the results obtained with a validation dataset including
J = 2 sources with 3 s speech signals taken from [36] in a subset
of locations of Fig. 2. In order to assess the performance of
the proposed algorithm, we compute the SAR, SDR, and SIR
metrics [36] for each microphone signal, and the average value
over all the microphone signals of these metrics is considered.

1All the related materials and some demos are publicly accessible at https://
github.com/polimi-ispl/rs-mnmf

Fig. 3. The SAR, SDR, and SIR averages and standard deviations obtained
by each BSS algorithm under analysis for (a) speech and (b) music signals.

A. Results

In Fig. 3, the average and standard deviation of the metrics
computed for every combination of J = 3 with the different
algorithms are reported. The results in Fig. 3(a) shows the
average between the metrics obtained with J = 3 male speech
source signals and J = 3 female speech source signals. It is
observed that FastMNMF provides the best SIR performance,
while ILRMA outperforms the other techniques in terms of
SAR and SDR. Compared to FastMNMF, RS-MNMF achieves
on average higher SAR and comparable SDR. As regards the
SIR, RS-MNMF records a better performance with respect to
both DOA-MNMF and WN-MNMF other than BS-MNMF. The
results in Fig. 3(b) are obtained with music source signals.
In this case, RS-MNMF and BS-MNMF show the best per-
formance. In particular, the proposed RS-MNMF achieves the
highest SIR on average. In general, the possibility of varying the
cost function allows tuning the performance to favor separation
(SIR) (e.g., with β = 0) over distortion and/or artifacts. In
fact, it is known [37]–[40] that higher separation capabilities
usually correspond to an increased artifact level. Interestingly,
from Fig. 3, we can observe that despite RS-MNMF employs
a fixed transformation, regardless of the source type, the re-
sults are more consistent than the other techniques, thanks to
the inherent representation of the source position in the Ray
Space.

Further comments, results with J = 2 sources, and an anal-
ysis of the robustness of the proposed technique to different
initializations are offered in the supplementary material.

VI. CONCLUSION

In this letter we proposed the adoption of the Ray Space
Transform representation for the separation of speech signals
from array data using the multichannel nonnegative matrix
factorization framework. The results showed that the Ray Space
is a suitable representation for applying MNMF algorithm and
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we obtained competitive results in comparison to the lastest
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of locations of Fig. 2. In order to assess the performance of
the proposed algorithm, we compute the SAR, SDR, and SIR
metrics [36] for each microphone signal, and the average value
over all the microphone signals of these metrics is considered.

1All the related materials and some demos are publicly accessible at https://
github.com/polimi-ispl/rs-mnmf

Fig. 3. The SAR, SDR, and SIR averages and standard deviations obtained
by each BSS algorithm under analysis for (a) speech and (b) music signals.

A. Results

In Fig. 3, the average and standard deviation of the metrics
computed for every combination of J = 3 with the different
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observed that FastMNMF provides the best SIR performance,
while ILRMA outperforms the other techniques in terms of
SAR and SDR. Compared to FastMNMF, RS-MNMF achieves
on average higher SAR and comparable SDR. As regards the
SIR, RS-MNMF records a better performance with respect to
both DOA-MNMF and WN-MNMF other than BS-MNMF. The
results in Fig. 3(b) are obtained with music source signals.
In this case, RS-MNMF and BS-MNMF show the best per-
formance. In particular, the proposed RS-MNMF achieves the
highest SIR on average. In general, the possibility of varying the
cost function allows tuning the performance to favor separation
(SIR) (e.g., with β = 0) over distortion and/or artifacts. In
fact, it is known [37]–[40] that higher separation capabilities
usually correspond to an increased artifact level. Interestingly,
from Fig. 3, we can observe that despite RS-MNMF employs
a fixed transformation, regardless of the source type, the re-
sults are more consistent than the other techniques, thanks to
the inherent representation of the source position in the Ray
Space.

Further comments, results with J = 2 sources, and an anal-
ysis of the robustness of the proposed technique to different
initializations are offered in the supplementary material.

VI. CONCLUSION

In this letter we proposed the adoption of the Ray Space
Transform representation for the separation of speech signals
from array data using the multichannel nonnegative matrix
factorization framework. The results showed that the Ray Space
is a suitable representation for applying MNMF algorithm and
it is effective for the application in real world scenarios. The
adoption of the Ray Space let us enhance the performance
with respect to the other unconstrained MNMF algorithms and
we obtained competitive results in comparison to the lastest
constrained MNMF techniques, in particular in terms of SIR.
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Fig. 1. (a) An example of the Ray Space data (10). Two sources emit a
sinusoidal signal at ω = 3kHz with DOA θ1 = θ2 = 45◦. The second source
(c) starts at n = 0.25 s. Although the sources reach the array with the same
DOA, the different locations of the sources in space are effectively mapped onto
the patterns in the Ray Space data (b) and (c).

III. SIGNAL MODEL USING THE RAY SPACE TRANSFORM

The Ray Space Transform (RST) was introduced in [21], [28]
as an operator that maps the microphone signals of an ULA
onto the Ray Space [22]. Ray Space was first defined in [22]. It
consists in the parameterization of the line equation z = µx+ ν
defined in the xz plane as a function of the slope µ and the
intercept ν on the z axis. A ray in the geometric space is therefore
mapped onto a point in the Ray Space. The main feature of
the Ray Space is that acoustic rays emitted from a point-like
source are mapped onto lines in the Ray Space, as shown in [21].
As a consequence, algorithms for source localization [22] and
separation [23] can be devised as operations on linear patterns
in the ray space. The narrowband RST is obtained through the
linear operator [21] Ψ(ω), whose (i, t)th element is

[Ψ]i,t (ω) = e
−ω dµw

c
√

1+µ2
w

(i−1)
ψ∗l,i, i = 1, . . . , I, (8)

where Ψ ∈ CI×LD and t = 1, . . . , LD is the index of the sam-
pled point in the Ray Space, which is defined as

t = (l − 1) + (w − 1)L+ 1, (9)

with w = 1, . . . , D the index of the D sampled directions dis-
cretizing the µ parameter space and l = 1, . . . , L the index de-
noting the spatial displacement over different subarrays, which
relates to the discretization over the ν parameter space. The term
ψl,i in (8) represents the spatial window defining the lth subarray.
A gaussian spatial window is adopted in [21].

The array signals are transformed into the Ray Space through

Z(ω, n) = ΨH(ω)y(ω, n), (10)

where Z(ω, n) = [Z1(ω, n), . . . , ZLD(ω, n)]T is the vector of
the Ray Space data. Due to the indexing of (9), the acoustic
sources in (10) are mapped on comb-like patterns as depicted in
Fig. 1. The array signals can be recovered as

y(ω, n) ≈ Ψ̃Z(ω, n), (11)

where Ψ̃ = (ΨΨH)−1Ψ is the inverse RST matrix [21].

IV. THE RAY SPACE MNMF (RS-MNMF)

In the presence of J sources active at any time, we model the
data in the Ray Space as

Zt(ω, n) =
J∑

j=1

rt,jsj(ω, n) + bt(ω, n), (12)

where rt,j describes the contribution of the jth source to the tth
Ray Space element, defined as in (9).

Original formulation of the cost function in [12], [13] used the
Itakura Saito (IS) divergence. In this work, we propose a more
general cost function based on the β-divergence [29], which also
takes the IS divergence as a special case (β = 0),

CRS(Θ) =
∑

t,ω,n

dβ
(
|Zt(ω, n)|2|ŷt(ω, n)

)
, (13)

where ŷt(ω, n) is the estimated square magnitude of the Ray
Space data, modelled as

ŷt(ω, n) =
∑

j

gt,j
∑

k∈Kj

wk(ω)hk(n), (14)

with gt,j = |rt,j |2. It is worth noting that the proposed model is
characterized by a frequency-independent mixing model, since
it depends only on the position of the sources and the same
line pattern is expected for every frequency corresponding to
the same active source. We can therefore exploit the similarity
with the instantaneous algorithm of [13] to derive the updated
algorithm of the MU method:

gt,j ← gt,j
sum

[
Ŷ·β−2

t ·Yt · (WjHj)
]

sum
[
Ŷ·β−1

t · (WjHj)
] , (15)

Wj ←Wj ·

∑LD
t=1 gt,j

(
Ŷ·β−2

t ·Yt

)
HT

j
∑LD

t=1 gt,jŶ
·β−1
t HT

j

, (16)

Hj ← Hj ·

∑M
m=1 (gt,jWj)

T
(
Ŷ·β−2

t ·Yt

)

∑LD
t=1 (gt,jWj)

T Ŷ·β−1
t

, (17)

where sum[M] is the sum of all the members in M and ·
represents the element-wise matrix operations. The matrices
Wj = [wk(ω)]ω,k∈Kj and Hj = [hk(n)]k∈Kj ,n are the weight
and basis matrices, as in [13], while Ŷt = [ŷt(ω, n)]ω,n contains
the estimated mixture data in the Ray Space domain.

We can obtain an estimate of the Ray Space source image in
terms of the minimum mean squared error (MMSE) as in [12],
[13]

s̃(t)imj (ω, n) =
gt,jpj(ω, n)

ŷt(ω, n)
Zt(ω, n), (18)

where s̃(t)imj (ω, n) is the estimated contribution of the jth source
at the tth Ray Space bin. Finally, an estimate of the sources at
each microphone can be obtained applying the inverse RST (11)

ŝim(ω, n) = Ψ̃(ω, n)s̃im(ω, n), (19)

where s̃im(ω, n) = [s̃(1)imj , . . . , s̃(LD)im
j ]T and ŝim(ω, n) =

[ŝ(1)imj , . . . , ŝ(I)imj ]T is the vector of the jth estimated source
signal at the microphones.
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Fig. 1. (a) An example of the Ray Space data (10). Two sources emit a
sinusoidal signal at ω = 3kHz with DOA θ1 = θ2 = 45◦. The second source
(c) starts at n = 0.25 s. Although the sources reach the array with the same
DOA, the different locations of the sources in space are effectively mapped onto
the patterns in the Ray Space data (b) and (c).
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The Ray Space Transform (RST) was introduced in [21], [28]
as an operator that maps the microphone signals of an ULA
onto the Ray Space [22]. Ray Space was first defined in [22]. It
consists in the parameterization of the line equation z = µx+ ν
defined in the xz plane as a function of the slope µ and the
intercept ν on the z axis. A ray in the geometric space is therefore
mapped onto a point in the Ray Space. The main feature of
the Ray Space is that acoustic rays emitted from a point-like
source are mapped onto lines in the Ray Space, as shown in [21].
As a consequence, algorithms for source localization [22] and
separation [23] can be devised as operations on linear patterns
in the ray space. The narrowband RST is obtained through the
linear operator [21] Ψ(ω), whose (i, t)th element is
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pled point in the Ray Space, which is defined as

t = (l − 1) + (w − 1)L+ 1, (9)

with w = 1, . . . , D the index of the D sampled directions dis-
cretizing the µ parameter space and l = 1, . . . , L the index de-
noting the spatial displacement over different subarrays, which
relates to the discretization over the ν parameter space. The term
ψl,i in (8) represents the spatial window defining the lth subarray.
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The array signals are transformed into the Ray Space through

Z(ω, n) = ΨH(ω)y(ω, n), (10)

where Z(ω, n) = [Z1(ω, n), . . . , ZLD(ω, n)]T is the vector of
the Ray Space data. Due to the indexing of (9), the acoustic
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where Ψ̃ = (ΨΨH)−1Ψ is the inverse RST matrix [21].
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where rt,j describes the contribution of the jth source to the tth
Ray Space element, defined as in (9).

Original formulation of the cost function in [12], [13] used the
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general cost function based on the β-divergence [29], which also
takes the IS divergence as a special case (β = 0),
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where ŷt(ω, n) is the estimated square magnitude of the Ray
Space data, modelled as
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where sum[M] is the sum of all the members in M and ·
represents the element-wise matrix operations. The matrices
Wj = [wk(ω)]ω,k∈Kj and Hj = [hk(n)]k∈Kj ,n are the weight
and basis matrices, as in [13], while Ŷt = [ŷt(ω, n)]ω,n contains
the estimated mixture data in the Ray Space domain.

We can obtain an estimate of the Ray Space source image in
terms of the minimum mean squared error (MMSE) as in [12],
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s̃(t)imj (ω, n) =
gt,jpj(ω, n)
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sinusoidal signal at ω = 3kHz with DOA θ1 = θ2 = 45◦. The second source
(c) starts at n = 0.25 s. Although the sources reach the array with the same
DOA, the different locations of the sources in space are effectively mapped onto
the patterns in the Ray Space data (b) and (c).
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and basis matrices, as in [13], while Ŷt = [ŷt(ω, n)]ω,n contains
the estimated mixture data in the Ray Space domain.

We can obtain an estimate of the Ray Space source image in
terms of the minimum mean squared error (MMSE) as in [12],
[13]

s̃(t)imj (ω, n) =
gt,jpj(ω, n)

ŷt(ω, n)
Zt(ω, n), (18)

where s̃(t)imj (ω, n) is the estimated contribution of the jth source
at the tth Ray Space bin. Finally, an estimate of the sources at
each microphone can be obtained applying the inverse RST (11)

ŝim(ω, n) = Ψ̃(ω, n)s̃im(ω, n), (19)

where s̃im(ω, n) = [s̃(1)imj , . . . , s̃(LD)im
j ]T and ŝim(ω, n) =

[ŝ(1)imj , . . . , ŝ(I)imj ]T is the vector of the jth estimated source
signal at the microphones.
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• 𝚿 3,! = 𝑒
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𝜓>,3∗ , 𝑡 = 1, … , 𝐿𝐷 is the ray
space index spanning 𝐷 directions in 𝐿 locations of
the ULA

• Ray Space consists in the parametrization of line
equation 𝑧 = 𝜇𝑥 + 𝜈 as a function of slope 𝜇 and
intercept 𝜈

• Main feature: acoustic rays emitted by point
sources are mapped onto lines in the Ray Space
encoding their location.GOAL:

exploit RS representation of source’s position as input domain for MNMF separation

10.1109/LSP.2021.3055463

https://github.com/polimi-ispl/rs-mnmf
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