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 ORB + RANSAC [1]Camera Calibration using Checkerboard Pattern
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Li et al. [2]

 ORB + RANSAC [1]Camera Calibration using Checkerboard Pattern

Camera Calibration 
via Hand-crafted Features

1. DeTone, Daniel, Tomasz Malisiewicz, and Andrew Rabinovich. "Deep image homography estimation." arXiv preprint arXiv:1606.03798 (2016).
2. Bo Li, Kun Peng, Xianghua Ying, and Hongbin Zha, “Simultaneous vanishing point detection and camera calibration from single images,” in ISVC, 2010.
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Li et al. [2]

 ORB + RANSAC [1]Camera Calibration using Checkerboard Pattern

GIST + Random Forest [3]

Camera Calibration 
via Hand-crafted Features

1. DeTone, Daniel, Tomasz Malisiewicz, and Andrew Rabinovich. "Deep image homography estimation." arXiv preprint arXiv:1606.03798 (2016).
2. Bo Li, Kun Peng, Xianghua Ying, and Hongbin Zha, “Simultaneous vanishing point detection and camera calibration from single images,” in ISVC, 2010.
3. Workman, Scott, et al. "Deepfocal: A method for direct focal length estimation." 2015 IEEE International Conference on Image Processing (ICIP). IEEE, 2015.
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Deep-PTZ [1] 
(focal length, distortion, rotation)

1. Zhang, Chaoning, et al. "Deepptz: Deep self-calibration for ptz cameras." Proc. of the IEEE/CVF Winter Conference on Applications of Computer Vision. 2020.
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Deep-PTZ [1] 
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1. Zhang, Chaoning, et al. "Deepptz: Deep self-calibration for ptz cameras." Proc. of the IEEE/CVF Winter Conference on Applications of Computer Vision. 2020.
2. Workman, Scott, et al. "Deepfocal: A method for direct focal length estimation." 2015 IEEE International Conference on Image Processing. IEEE, 2015.
3. Bogdan, Oleksandr, et al. "DeepCalib: a deep learning approach for automatic intrinsic calibration of wide field-of-view cameras." Proceedings of the 15th ACM 

SIGGRAPH European Conference on Visual Media Production. 2018.
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Deep-PTZ [1] 
(focal length, distortion, rotation)

Deep-Focal [2]
(focal length)

Deep-Calib [3]
(focal length, distortion)

Deep-Homo [4]
(homography)

1. Zhang, Chaoning, et al. "Deepptz: Deep self-calibration for ptz cameras." Proc. of the IEEE/CVF Winter Conference on Applications of Computer Vision. 2020.
2. Workman, Scott, et al. "Deepfocal: A method for direct focal length estimation." 2015 IEEE International Conference on Image Processing. IEEE, 2015.
3. Bogdan, Oleksandr, et al. "DeepCalib: a deep learning approach for automatic intrinsic calibration of wide field-of-view cameras." Proceedings of the 15th ACM 

SIGGRAPH European Conference on Visual Media Production. 2018.
4. DeTone, Daniel, Tomasz Malisiewicz, and Andrew Rabinovich. "Deep image homography estimation." arXiv preprint arXiv:1606.03798, 2016.
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3D Projection
• via Mathematical Modelling

Camera Calibration

u0

fx

fy

v0

b

d

tx

ty

tz

Θ

Mathematical 
Modelling

3D Projection

Z

X

Y  MSE

Camera Calibration 
via Camera Projection Loss

Calibration Parameters are:
● Mathematically related
● data-drive with maths

22



Mathematical Modelling
• via Image to Camera to World

Camera Calibration 
via Inverse Projection
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Mathematical Modelling
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Mathematical Modelling
• via Lambda Layers Mathematical Modelling
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Results and Evaluation
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Datasets

CVGL Camera Calibration Dataset
• Synthetic
• via CARLA Simulator
• 2 Towns
• 49 Camera Configurations 
• 79,320 image pairs
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Datasets

CVGL Camera Calibration Dataset
• Synthetic
• via CARLA Simulator
• 2 Towns
• 49 Camera Configurations 
• 79,320 image pairs

Tsinghua-Daimler Cyclist Detection Benchmark
• 2,914 images comprising of the test set used for evaluation
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Quantitative Evaluation

Evaluation on CVGL Camera Calibration Dataset
• via Normalized Mean Absolute Error

Method fx fy u0 v0 b d tx ty tz Θ

Average [1] 0.840 0.786 0.432 0.542 6.552 3.607 6.552 9.372 5.361 0.744

Deep-Homo [2] 0.062 0.062 0.008 0.008 0.156 0.065 0.156 0.161 0.155 0.045

MTL-CPL-U 0.935 0.685 0.892 0.737 0.938 0.432 0.400 0.329 0.432 1.060

MTL-Baseline 0.030 0.029 0.017 0.007 0.057 0.013 0.064 0.076 0.071 0.024

MTL-CPL-A 0.022 0.022 0.004 0.006 0.093 0.007 0.097 0.116 0.098 0.017

1. Workman, Scott, et al. "Deepfocal: A method for direct focal length estimation." 2015 IEEE International Conference on Image Processing. IEEE, 2015.
2. DeTone, Daniel, Tomasz Malisiewicz, and Andrew Rabinovich. "Deep image homography estimation." arXiv preprint arXiv:1606.03798, 2016.
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Quantitative Evaluation

Evaluation on Tsinghua-Daimler Cyclist Detection 
Benchmark (without any training or transfer learning)
• via Normalized Mean Absolute Error

Method fx fy u0 v0 b d tx ty tz Θ

Average [1] 0.994 0.991 0.969 0.951 112.438 0.492 10.843 271.935 13.798 982.413

Deep-Homo 
[2]

0.958 0.958 0.946 0.895 9.985 1.233 0.166 27.141 0.862 2746.994

MTL-CPL-U 0.872 0.888 0.782 0.795 0.081 1.271 0.147 23.836 0.635 7700.968

MTL-Baseline 0.957 0.958 0.944 0.893 18.323 1.258 1.035 32.946 0.999 2418.250

MTL-CPL-A 0.938 0.938 0.946 0.895 14.182 1.259 0.727 30.640 1.418 1995.353

1. Workman, Scott, et al. "Deepfocal: A method for direct focal length estimation." 2015 IEEE International Conference on Image Processing. IEEE, 2015.
2. DeTone, Daniel, Tomasz Malisiewicz, and Andrew Rabinovich. "Deep image homography estimation." arXiv preprint arXiv:1606.03798, 2016.
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Summary & Conclusions

Summary

• A new dataset for Camera Calibration.

• A new representation to incorporate camera model equations in a 
neural network in a multi-task learning framework.

• A new loss utilizing camera model neural network to reconstruct 3D 
projection and uses the reconstruction loss to estimate the camera 
parameters.

• The proposed method performs better than both traditional and 
learning based methods.
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Please come to the poster for further details!
Poster Session: IVMSP-36: Camera 

Calibration and Human Pose
Time: Thursday, 12 May, 21:00-21:45 

(Singapore Time)

Email: murtaza.taj@lums.edu.pk
       l181864@lhr.nu.edu.pk

            Project Page: https://cvlab.lums.edu.pk/cpl
               GitHub: https://github.com/thanif/CPL

    CVG Lab Website: https://cvlab.lums.edu.pk
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